N2O changes from the Last Glacial Maximum to the preindustrial - Part 2: terrestrial N2O emissions and carbon-nitrogen cycle interactions

被引:9
作者
Joos, Fortunat [1 ,2 ]
Spahni, Renato [1 ,2 ]
Stocker, Benjamin D. [3 ,4 ]
Lienert, Sebastian [1 ,2 ]
Mueller, Jurek [1 ,2 ]
Fischer, Hubertus [1 ,2 ]
Schmitt, Jochen [1 ,2 ]
Prentice, I. Colin [5 ,6 ,7 ]
Otto-Bliesner, Bette [8 ]
Liu, Zhengyu [9 ]
机构
[1] Univ Bern, Phys Inst, Climate & Environm Phys, CH-3012 Bern, Switzerland
[2] Univ Bern, Oeschger Ctr Climate Change Res, CH-3012 Bern, Switzerland
[3] ETH, Dept Environm Syst Sci, Univ Str 2, CH-8092 Zurich, Switzerland
[4] Swiss Fed Inst Forest Snow & Landscape Res WSL, Zurcherstr 111, CH-8903 Birmensdorf, Switzerland
[5] Imperial Coll London, Dept Life Sci, AXA Chair Biosphere & Climate Impacts, Silwood Pk Campus,Buckhurst Rd, Ascot SL5 7PY, Berks, England
[6] Tsinghua Univ, Dept Earth Syst Sci, Key Lab Earth Syst Modelling, Minist Educ, Beijing 100084, Peoples R China
[7] Macquarie Univ, Dept Biol Sci, Sydney, NSW 2109, Australia
[8] Natl Ctr Atmospher Res, Climate & Global Dynam Lab, POB 3000, Boulder, CO 80307 USA
[9] Ohio State Univ, Dept Geog, Atmospher Sci Program, Columbus, OH 43210 USA
基金
瑞士国家科学基金会; 欧洲研究理事会; 美国国家科学基金会;
关键词
WATER-USE EFFICIENCY; ICE-CORE RECORDS; CLIMATE-CHANGE; OXIDE EMISSIONS; METHANE EMISSIONS; NITRIFIER DENITRIFICATION; PHOSPHORUS LIMITATION; NUTRIENT COMPETITION; CO2; FERTILIZATION; VEGETATION MODEL;
D O I
10.5194/bg-17-3511-2020
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Carbon-nitrogen (C-N) interactions regulate N availability for plant growth and for emissions of nitrous oxide (N2O) and the uptake of carbon dioxide. Future projections of these terrestrial greenhouse gas fluxes are strikingly divergent, leading to major uncertainties in projected global warming. Here we analyse the large increase in terrestrial N2O emissions over the past 21 000 years as reconstructed from ice-core isotopic data and presented in part 1 of this study. Remarkably, the increase occurred in two steps, each realized over decades and within a maximum of 2 centuries, at the onsets of the major deglacial Northern Hemisphere warming events. The data suggest a highly dynamic and responsive global N cycle. The increase may be explained by an increase in the flux of reactive N entering and leaving ecosystems or by an increase in N2O yield per unit N converted. We applied the LPX-Bern dynamic global vegetation model in deglacial simulations forced with Earth system model climate data to investigate N2O emission patterns, mechanisms, and C-N coupling. The N2O emission changes are mainly attributed to changes in temperature and precipitation and the loss of land due to sea-level rise. LPX-Bern simulates a deglacial increase in N2O emissions but underestimates the reconstructed increase by 47 %. Assuming time-independent N sources in the model to mimic progressive N limitation of plant growth results in a decrease in N2O emissions in contrast to the reconstruction. Our results appear consistent with suggestions of (a) biological controls on ecosystem N acquisition and (b) flexibility in the coupling of the C and N cycles during periods of rapid environmental change. A dominant uncertainty in the explanation of the reconstructed N2O emissions is the poorly known N2O yield per N lost through gaseous pathways and its sensitivity to soil conditions. The deglacial N2O record provides a constraint for future studies.
引用
收藏
页码:3511 / 3543
页数:33
相关论文
共 165 条
  • [1] A trait-based approach for modelling microbial litter decomposition
    Allison, S. D.
    [J]. ECOLOGY LETTERS, 2012, 15 (09) : 1058 - 1070
  • [2] Spatial variability of soil N2O and CO2 fluxes in different topographic positions in a tropical montane forest in Kenya
    Arias-Navarro, C.
    Diaz-Pines, E.
    Klatt, S.
    Brandt, P.
    Rufino, M. C.
    Butterbach-Bahl, K.
    Verchot, L. V.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2017, 122 (03) : 514 - 527
  • [3] Arneth A, 2010, NAT GEOSCI, V3, P525, DOI [10.1038/ngeo905, 10.1038/NGEO905]
  • [4] Carbon-Concentration and Carbon-Climate Feedbacks in CMIP5 Earth System Models
    Arora, Vivek K.
    Boer, George J.
    Friedlingstein, Pierre
    Eby, Michael
    Jones, Chris D.
    Christian, James R.
    Bonan, Gordon
    Bopp, Laurent
    Brovkin, Victor
    Cadule, Patricia
    Hajima, Tomohiro
    Ilyina, Tatiana
    Lindsay, Keith
    Tjiputra, Jerry F.
    Wu, Tongwen
    [J]. JOURNAL OF CLIMATE, 2013, 26 (15) : 5289 - 5314
  • [5] Nitrogen limitation of decomposition and decay: How can it occur?
    Averill, Colin
    Waring, Bonnie
    [J]. GLOBAL CHANGE BIOLOGY, 2018, 24 (04) : 1417 - 1427
  • [6] Rapid nitrous oxide cycling in the suboxic ocean
    Babbin, Andrew R.
    Bianchi, Daniele
    Jayakumar, Amal
    Ward, Bess B.
    [J]. SCIENCE, 2015, 348 (6239) : 1127 - 1129
  • [7] Denitrification in grass swards is increased under elevated atmospheric CO2
    Baggs, EM
    Richter, M
    Cadisch, G
    Hartwig, UA
    [J]. SOIL BIOLOGY & BIOCHEMISTRY, 2003, 35 (05) : 729 - 732
  • [8] Bange HW, 2008, NITROGEN IN THE MARINE ENVIRONMENT, 2ND EDITION, P51, DOI 10.1016/B978-0-12-372522-6.00002-5
  • [9] Sampling frequency affects estimates of annual nitrous oxide fluxes
    Barton, L.
    Wolf, B.
    Rowlings, D.
    Scheer, C.
    Kiese, R.
    Grace, P.
    Stefanova, K.
    Butterbach-Bahl, K.
    [J]. SCIENTIFIC REPORTS, 2015, 5
  • [10] Marine N2O Emissions From Nitrification and Denitrification Constrained by Modern Observations and Projected in Multimillennial Global Warming Simulations
    Battaglia, G.
    Joos, F.
    [J]. GLOBAL BIOGEOCHEMICAL CYCLES, 2018, 32 (01) : 92 - 121