3D numerical analysis for the inelastic deformation of rubber particle modified polymers

被引:0
|
作者
Wang, TJ [1 ]
Zhang, WX
Kishimoto, K
Notomi, M
机构
[1] Xi An Jiao Tong Univ, Dept Engn Mech, State Key Lab Strength & Vibrat Mech Struct, Xian 710049, Peoples R China
[2] Tokyo Inst Technol, Dept Mech & Control Engn, Meguro Ku, Tokyo 1528552, Japan
[3] Meiji Univ, Dept Mech Engn, Tama Ku, Kawasaki, Kanagawa 2148571, Japan
来源
ADVANCES IN FRACTURE AND FAILURE PREVENTION, PTS 1 AND 2 | 2004年 / 261-263卷
关键词
deformation; micromechanics; finite element method; polymers;
D O I
10.4028/www.scientific.net/KEM.261-263.717
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Body-centered cubic unit cell models and three-dimensional finite element method are used to study the inelastic deformation of rubber particle modified polymers. Calculations are carried out for three loading conditions, i.e. uniaxial loading, plane strain deformation loading and the so-called 'equivalent shear' loading. Distributions of the localized shear deformation are presented to understand the microscopic deformation mechanisms of the polymers. Effects of particle size, particle volume fraction and loading conditions on the. micro- and macroscopic deformation behavior of rubber particle modified polymers are discussed.
引用
收藏
页码:717 / 722
页数:6
相关论文
共 50 条
  • [21] 3D numerical simulation of the behaviour of a spherical particle suspended in a Newtonian fluid and submitted to a simple shear
    Bikard, Jerome
    Menard, Pierre
    Peuvrel-Disdier, Edith
    Budtova, Tatiana
    COMPUTATIONAL MATERIALS SCIENCE, 2006, 37 (04) : 517 - 525
  • [22] Single Pyramid-Shaped Particle Impact on Metallic Surfaces: A 3D Numerical Simulation and Experiment
    Du, Mingchao
    Li, Zengliang
    Dong, Xiangwei
    Feng, Long
    Liu, Yanxin
    Fan, Chunyong
    TRIBOLOGY LETTERS, 2019, 67 (04)
  • [23] Numerical study on the dynamic fracture behavior of 3D heterogeneous rocks using General Particle Dynamics
    Yin, P.
    Ma, H. C.
    Liu, X. W.
    Bi, J.
    Zhou, X. P.
    Berto, Filippo
    THEORETICAL AND APPLIED FRACTURE MECHANICS, 2018, 96 : 90 - 104
  • [24] 3D Numerical Modeling for Inductive Processes
    Gagnoud, A.
    Du Terrail-Couvat, Y.
    Budenkova, O.
    9TH INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC PROCESSING OF MATERIALS (EPM2018), 2018, 424
  • [25] Dynamic elastic-plastic analysis of 3D deformation in abrasive waterjet machining
    Hassan, AI
    Kosmol, J
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2001, 113 (1-3) : 337 - 341
  • [26] NUMERICAL-ANALYSIS OF DEFORMATION OF RUBBER COMPOSITE-MATERIAL (TENSILE DEFORMATION UNDER PLANE-STRAIN)
    OCHI, M
    HATO, S
    ABE, T
    JSME INTERNATIONAL JOURNAL SERIES I-SOLID MECHANICS STRENGTH OF MATERIALS, 1992, 35 (04): : 404 - 412
  • [27] 3D printable light-responsive polymers
    Roppolo, I.
    Chiappone, A.
    Angelini, A.
    Stassi, S.
    Frascella, F.
    Pirri, C. F.
    Ricciardi, C.
    Descrovi, E.
    MATERIALS HORIZONS, 2017, 4 (03) : 396 - 401
  • [28] Analysis of 3D thermal field and deformation in the stator of large hydro-generators
    Yao, RP
    Rao, FQ
    ICEMS 2003: PROCEEDINGS OF THE SIXTH INTERNATIONAL CONFERENCE ON ELECTRICAL MACHINES AND SYSTEMS, VOLS 1 AND 2, 2003, : 714 - 716
  • [29] Numerical Analysis of the Elastic Properties of 3D Needled Carbon/Carbon Composites
    Y. Tan
    Y. Yan
    X. Li
    F. Guo
    Mechanics of Composite Materials, 2017, 53 : 551 - 562
  • [30] Evaluation of the Viability of 3D Printing in Recycling Polymers
    Maraveas, Chrysanthos
    Kyrtopoulos, Ioannis Vasileios
    Arvanitis, Konstantinos G.
    POLYMERS, 2024, 16 (08)