Design of WO3-SnO2 core-shell nanofibers and their enhanced gas sensing performance based on different work function

被引:70
作者
Li, Feng [1 ]
Gao, Xing [1 ]
Wang, Rui [1 ]
Zhang, Tong [1 ]
机构
[1] Jilin Univ, Coll Elect Sci & Engn, State Key Lab Integrated Optoelect, Changchun 130012, Jilin, Peoples R China
关键词
Core-shell structure; Nanofibers; Coaxial electrospinning; Work function; gas sensor; SNO2; NANOWIRES; SENSORS; NANORODS; WO3; HETERONANOSTRUCTURES; TRIMETHYLAMINE; TEMPERATURE; NANOBELTS; HUMIDITY; CATALYST;
D O I
10.1016/j.apsusc.2018.02.122
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work, core-shell WO3-SnO2 (CS-WS) nanofibers (NFs) have been successfully synthesized via a coaxial electrospinning approach. The structure and morphology characteristics of the resultant products were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectra (XPS). To investigate the sensing mechanism of the CS-WS NFs, sensors based on SnO2 NFs, WO3 NFs, and SnO2-WO3 composite NFs were fabricated respectively, and their gas sensing properties were investigated by using CO, ethanol, toluene, acetone, and ammonia as the test gas. The results indicated that the CS-WS NFs exhibited a good response to ethanol (5.09 at 10 ppm) and short response/recovery time (18.5 s and 282 s) compared with the other test gases. The enhanced ethanol sensing properties of CS-WS NFs compared with those of SnO2 NFs were closely associated with the CS structure and its derivative effect due to the different work function of SnO2 and WO3. The approach proposed in this study may contribute to the realization of more sensitive metal oxide semiconductor (MOS) core-shell heterostructure sensors. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:30 / 37
页数:8
相关论文
共 45 条
[1]   Au/α-Fe2O3 catalyst for water-gas shift reaction prepared by deposition-precipitation [J].
Andreeva, D ;
Tabakova, T ;
Idakiev, V ;
Christov, P ;
Giovanoli, R .
APPLIED CATALYSIS A-GENERAL, 1998, 169 (01) :9-14
[2]   Conduction model of metal oxide gas sensors [J].
Barsan, N ;
Weimar, U .
JOURNAL OF ELECTROCERAMICS, 2001, 7 (03) :143-167
[3]   Conduction mechanisms in SnO2 based polycrystalline thick film gas sensors exposed to CO and H2 in different oxygen backgrounds [J].
Barsan, N. ;
Huebner, M. ;
Weimar, U. .
SENSORS AND ACTUATORS B-CHEMICAL, 2011, 157 (02) :510-517
[4]   Striking sensing improvement of n-type oxide nanowires by electronic sensitization based on work function difference [J].
Choi, Sun-Woo ;
Katoch, Akash ;
Kim, Jae-Hun ;
Kim, Sang Sub .
JOURNAL OF MATERIALS CHEMISTRY C, 2015, 3 (07) :1521-1527
[5]   Dual Functional Sensing Mechanism in SnO2-ZnO Core-Shell Nanowires [J].
Choi, Sun-Woo ;
Katoch, Akash ;
Sun, Gun-Joo ;
Kim, Jae-Hun ;
Kim, Soo-Hyun ;
Kim, Sang Sub .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (11) :8281-8287
[6]   Formulation and characterization of ZnO:Sb thick-film gas sensors [J].
Dayan, NJ ;
Sainkar, SR ;
Karekar, RN ;
Aiyer, RC .
THIN SOLID FILMS, 1998, 325 (1-2) :254-258
[7]   Neodymium Dioxide Carbonate as a Sensing Layer for Chemoresistive CO2 Sensing [J].
Djerdj, Igor ;
Haensch, Alexander ;
Koziej, Dorota ;
Pokhrel, Suman ;
Barsan, Nicolae ;
Weimar, Udo ;
Niederberger, Markus .
CHEMISTRY OF MATERIALS, 2009, 21 (22) :5375-5381
[8]   Adsorption effects of NO2 at ppm level on visible photoluminescence response of SnO2 nanobelts -: art. no. 011923 [J].
Faglia, G ;
Baratto, C ;
Sberveglieri, G ;
Zha, M ;
Zappettini, A .
APPLIED PHYSICS LETTERS, 2005, 86 (01) :011923-1
[9]   Novel Mixed Phase SnO2 Nanorods Assembled with SnO2 Nanocrystals for Enhancing Gas-Sensing Performance toward Isopropanol Gas [J].
Hu, Dan ;
Han, Bingqian ;
Deng, Shaojuan ;
Feng, Zhipeng ;
Wang, Yan ;
Popovic, Jasminka ;
Nuskol, Marko ;
Wang, Yude ;
Djerdj, Igor .
JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (18) :9832-9840
[10]   Influence of humidity on CO sensing with p-type CuO thick film gas sensors [J].
Huebner, M. ;
Simion, C. E. ;
Tomescu-Stanoiu, A. ;
Pokhrel, S. ;
Barsan, N. ;
Weimar, U. .
SENSORS AND ACTUATORS B-CHEMICAL, 2011, 153 (02) :347-353