The κ-Generalizations of Stirling Approximation and Multinominal Coefficients

被引:6
作者
Wada, Tatsuaki [1 ]
Suyari, Hiroki [2 ]
机构
[1] Ibaraki Univ, Dept Elect & Elect Engn, Hitachi, Ibaraki 3168511, Japan
[2] Chiba Univ, Grad Sch Adv Integrat Sci, Inage Ku, Chiba 2638522, Japan
来源
ENTROPY | 2013年 / 15卷 / 12期
关键词
kappa-entropy; kappa-exponential; kappa-logarithm; Stirling approximation; NONEXTENSIVE STATISTICS; TSALLIS STATISTICS; LAW; ALGEBRA; ENTROPY; ERROR;
D O I
10.3390/e15125144
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Stirling approximation of the factorials and multinominal coefficients are generalized based on the kappa-generalized functions introduced by Kaniadakis. We have related the kappa-generalized multinominal coefficients to the kappa-entropy by introducing a new kappa-product operation, which exists only when kappa not equal 0.
引用
收藏
页码:5144 / 5153
页数:10
相关论文
共 16 条
[1]  
[Anonymous], 2009, SPRINGER
[2]   A possible deformed algebra and calculus inspired in nonextensive thermostatistics [J].
Borges, EP .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 340 (1-3) :95-101
[3]  
Diaz R., 2007, Divulg. Mat, V15, P179
[4]   Statistical mechanics in the context of special relativity. II. [J].
Kaniadakis, G .
PHYSICAL REVIEW E, 2005, 72 (03)
[5]   Statistical mechanics in the context of special relativity [J].
Kaniadakis, G .
PHYSICAL REVIEW E, 2002, 66 (05) :17-056125
[6]   A new one-parameter deformation of the exponential function [J].
Kaniadakis, G ;
Scarfone, AM .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2002, 305 (1-2) :69-75
[7]   Theoretical Foundations and Mathematical Formalism of the Power-Law Tailed Statistical Distributions [J].
Kaniadakis, Giorgio .
ENTROPY, 2013, 15 (10) :3983-4010
[8]   Generalized algebra within a nonextensive statistics [J].
Nivanen, L ;
Le Méhauté, A ;
Wang, QA .
REPORTS ON MATHEMATICAL PHYSICS, 2003, 52 (03) :437-444
[9]   Combinatorial basis and non-asymptotic form of the Tsallis entropy function [J].
Niven, R. ;
Suyari, H. .
EUROPEAN PHYSICAL JOURNAL B, 2008, 61 (01) :75-82
[10]   Canonical partition function for anomalous systems described by the κ-entropy [J].
Scarfone, Antonio M. ;
Wada, Tatsuaki .
PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 2006, (162) :45-52