Non-agglomerated dry silica nanoparticles

被引:77
作者
Mueller, R
Kammler, HK
Pratsinis, SE
Vital, A
Beaucage, G
Burtscher, P
机构
[1] Swiss Fed Inst Technol, Dept Mech & Proc Engn, Particle Technol Lab, CH-8092 Zurich, Switzerland
[2] Swiss Fed Labs Mat Testing & Res, Lab High Performance Ceram, CH-8600 Dubendorf, Switzerland
[3] Univ Cincinnati, Dept Mat Sci & Engn, Cincinnati, OH 45221 USA
[4] Ivoclar Vivadent AG, FL-9494 Schaan, Liechtenstein
基金
美国国家科学基金会;
关键词
nanocomposites; degree of agglomeration; flame aerosol reactor;
D O I
10.1016/j.powtec.2004.01.004
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Silica nanoparticles for polymer nanocomposites are made by oxidation of hexamethyldisiloxane (HMDSO) in methane/oxygen diffusion flames. The flame temperature is measured by in-situ Fourier transform infrared (FTIR) spectroscopy while the degree of agglomeration of the product powder is quantitatively determined by ultra small angle X-ray scattering (USAXS) and is confirmed by transmission electron microscopy (TEM). Precisely controlled, non-agglomerated silica particles having an average primary particle diameter of 18-85 nm, as determined by N-2 adsorption and TEM, are made at low silica production rates of 9 g/h or at low O-2 flow rates at silica production rates of 17 g/h, while smaller and highly agglomerated particles are made at high O-2 flow rates at silica production rates of 17 g/h. The differences in morphology result from the completion of gas-to-particle conversion and from the onset of steep cooling in the flames that determines the duration of full coalescence. Nanocomposites with dimethylacrylate polymers are made using non-agglomerated silica particles and compared to the ones made with commercially available silicas. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:40 / 48
页数:9
相关论文
共 31 条
  • [11] Computational analysis of coagulation and coalescence in the flame synthesis of titania particles
    Johannessen, T
    Pratsinis, SE
    Livbjerg, H
    [J]. POWDER TECHNOLOGY, 2001, 118 (03) : 242 - 250
  • [12] Scaling-up the production of nanosized SiO2-particles in a double diffusion flame aerosol reactor
    Kammler, Hendrik K.
    Pratsinis, Sotiris E.
    [J]. JOURNAL OF NANOPARTICLE RESEARCH, 1999, 1 (04) : 467 - 477
  • [13] Structure of flame-made silica nanoparticles by ultra-small-angle X-ray scattering
    Kammler, HK
    Beaucage, G
    Mueller, R
    Pratsinis, SE
    [J]. LANGMUIR, 2004, 20 (05) : 1915 - 1921
  • [14] Flame, temperature measurements during electrically assisted aerosol synthesis of nanoparticles
    Kammler, HK
    Pratsinis, SE
    Morrison, PW
    Hemmerling, B
    [J]. COMBUSTION AND FLAME, 2002, 128 (04) : 369 - 381
  • [15] Synthesis of silica-carbon particles in a turbulent H2-air flame aerosol reactor
    Kammler, HK
    Mueller, R
    Senn, O
    Pratsinis, SE
    [J]. AICHE JOURNAL, 2001, 47 (07) : 1533 - 1543
  • [16] KATZ JL, 1994, NANOSTRUCT MATER, V4, P551, DOI 10.1016/0965-9773(94)90063-9
  • [17] PARTICLE GROWTH BY COALESCENCE AND AGGLOMERATION
    KOCH, W
    FRIEDLANDER, SK
    [J]. PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION, 1991, 8 (01) : 86 - 89
  • [18] Long GG, 2000, AIP CONF PROC, V521, P183, DOI 10.1063/1.1291782
  • [19] MICHAEL G, 2001, DEGUSSA TECH B PIGME, V11, P24
  • [20] In situ Fourier transform infrared characterization of the effect of electrical fields on the flame synthesis of TiO2 particles
    Morrison, PW
    Raghavan, R
    Timpone, AJ
    Artelt, CP
    Pratsinis, SE
    [J]. CHEMISTRY OF MATERIALS, 1997, 9 (12) : 2702 - 2708