Coupled Kardar-Parisi-Zhang Equations in One Dimension

被引:37
作者
Ferrari, Patrik L. [1 ]
Sasamoto, Tomohiro [2 ,3 ]
Spohn, Herbert [3 ]
机构
[1] Univ Bonn, Inst Appl Math, D-53115 Bonn, Germany
[2] Chiba Univ, Dept Math, Inage Ku, Chiba 2638522, Japan
[3] Tech Univ Munich, Zentrum Math, D-85747 Garching, Germany
关键词
KPZ equation; Universality; Scaling functions; Interacting particle system; Exclusion processes; Matrix product; TRANSLATIONAL INVARIANCE; UNIVERSAL FLUCTUATIONS; SPONTANEOUS BREAKING; STATIONARY STATES; DYNAMICS; LIMIT; INTERFACES; TURBULENCE; SYSTEMS; NOISE;
D O I
10.1007/s10955-013-0842-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Over the past years our understanding of the scaling properties of the solutions to the one-dimensional KPZ equation has advanced considerably, both theoretically and experimentally. In our contribution we export these insights to the case of coupled KPZ equations in one dimension. We establish equivalence with nonlinear fluctuating hydrodynamics for multi-component driven stochastic lattice gases. To check the predictions of the theory, we perform Monte Carlo simulations of the two-component AHR model. Its steady state is computed using the matrix product ansatz. Thereby all coefficients appearing in the coupled KPZ equations are deduced from the microscopic model. Time correlations in the steady state are simulated and we confirm not only the scaling exponent, but also the scaling function and the non-universal coefficients.
引用
收藏
页码:377 / 399
页数:23
相关论文
共 50 条
[41]   One-dimensional Kardar-Parisi-Zhang and Kuramoto-Sivashinsky universality class: Limit distributions [J].
Roy, Dipankar ;
Pandit, Rahul .
PHYSICAL REVIEW E, 2020, 101 (03)
[42]   Time-averaged height distribution of the Kardar-Parisi-Zhang interface [J].
Smith, Naftali R. ;
Meerson, Baruch ;
Vilenkin, Arkady .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2019,
[43]   Height distribution tails in the Kardar-Parisi-Zhang equation with Brownian initial conditions [J].
Meerson, Baruch ;
Schmidt, Johannes .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2017,
[44]   Out-of-time-ordered correlator in the one-dimensional Kuramoto-Sivashinsky and Kardar-Parisi-Zhang equations [J].
Roy, Dipankar ;
Huse, David A. ;
Kulkarni, Manas .
PHYSICAL REVIEW E, 2023, 108 (05)
[45]   Conformal invariance of loop ensembles under Kardar-Parisi-Zhang dynamics [J].
Cao, Xiangyu ;
Rosso, Alberto ;
Santachiara, Raoul .
EPL, 2015, 111 (01)
[46]   Kardar-Parisi-Zhang growth on square domains that enlarge nonlinearly in time [J].
Carrasco, Ismael S. S. ;
Oliveira, Tiago J. .
PHYSICAL REVIEW E, 2022, 105 (05)
[47]   Universal properties of the Kardar-Parisi-Zhang equation with quenched columnar disorders [J].
Haldar, Astik .
PHYSICAL REVIEW E, 2021, 104 (02)
[48]   Renormalizing the Kardar-Parisi-Zhang Equation in d ≥ 3 in Weak Disorder [J].
Comets, Francis ;
Cosco, Clement ;
Mukherjee, Chiranjib .
JOURNAL OF STATISTICAL PHYSICS, 2020, 179 (03) :713-728
[49]   Restoring the Fluctuation-Dissipation Theorem in Kardar-Parisi-Zhang Universality Class through a New Emergent Fractal Dimension [J].
Gomes-Filho, Marcio S. ;
de Castro, Pablo ;
Liarte, Danilo B. ;
Oliveira, Fernando A. .
ENTROPY, 2024, 26 (03)
[50]   Scaling behaviour of the time-fractional Kardar-Parisi-Zhang equation [J].
Xia, Hui ;
Tang, Gang ;
Ma, Jingjie ;
Hao, Dapeng ;
Xun, Zhipeng .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (27)