Coupled Kardar-Parisi-Zhang Equations in One Dimension

被引:37
作者
Ferrari, Patrik L. [1 ]
Sasamoto, Tomohiro [2 ,3 ]
Spohn, Herbert [3 ]
机构
[1] Univ Bonn, Inst Appl Math, D-53115 Bonn, Germany
[2] Chiba Univ, Dept Math, Inage Ku, Chiba 2638522, Japan
[3] Tech Univ Munich, Zentrum Math, D-85747 Garching, Germany
关键词
KPZ equation; Universality; Scaling functions; Interacting particle system; Exclusion processes; Matrix product; TRANSLATIONAL INVARIANCE; UNIVERSAL FLUCTUATIONS; SPONTANEOUS BREAKING; STATIONARY STATES; DYNAMICS; LIMIT; INTERFACES; TURBULENCE; SYSTEMS; NOISE;
D O I
10.1007/s10955-013-0842-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Over the past years our understanding of the scaling properties of the solutions to the one-dimensional KPZ equation has advanced considerably, both theoretically and experimentally. In our contribution we export these insights to the case of coupled KPZ equations in one dimension. We establish equivalence with nonlinear fluctuating hydrodynamics for multi-component driven stochastic lattice gases. To check the predictions of the theory, we perform Monte Carlo simulations of the two-component AHR model. Its steady state is computed using the matrix product ansatz. Thereby all coefficients appearing in the coupled KPZ equations are deduced from the microscopic model. Time correlations in the steady state are simulated and we confirm not only the scaling exponent, but also the scaling function and the non-universal coefficients.
引用
收藏
页码:377 / 399
页数:23
相关论文
共 50 条
[31]   Height distributions in competitive one-dimensional Kardar-Parisi-Zhang systems [J].
Oliveira, T. J. .
PHYSICAL REVIEW E, 2013, 87 (03)
[32]   Crossover from Growing to Stationary Interfaces in the Kardar-Parisi-Zhang Class [J].
Takeuchi, Kazumasa A. .
PHYSICAL REVIEW LETTERS, 2013, 110 (21)
[33]   Large fluctuations of a Kardar-Parisi-Zhang interface on a half line [J].
Meerson, Baruch ;
Vilenkin, Arkady .
PHYSICAL REVIEW E, 2018, 98 (03)
[34]   Kardar-Parisi-Zhang universality in the phase distributions of one-dimensional exciton-polaritons [J].
Squizzato, Davide ;
Canet, Leonie ;
Minguzzi, Anna .
PHYSICAL REVIEW B, 2018, 97 (19)
[35]   Effects of memory on scaling behaviour of Kardar-Parisi-Zhang equation [J].
Tang Gang ;
Hao Da-Peng ;
Xia Hui ;
Han Kui ;
Xun Zhi-Peng .
CHINESE PHYSICS B, 2010, 19 (10)
[36]   Universality of fluctuations in the Kardar-Parisi-Zhang class in high dimensions and its upper critical dimension [J].
Alves, S. G. ;
Oliveira, T. J. ;
Ferreira, S. C. .
PHYSICAL REVIEW E, 2014, 90 (02)
[37]   Kardar-Parisi-Zhang universality class and the anchored Toom interface [J].
Barkema, G. T. ;
Ferrari, P. L. ;
Lebowitz, J. L. ;
Spohn, H. .
PHYSICAL REVIEW E, 2014, 90 (04)
[38]   Long-range temporal correlations in the Kardar-Parisi-Zhang growth: numerical simulations [J].
Song, Tianshu ;
Xia, Hui .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2016,
[39]   Universal fluctuations in Kardar-Parisi-Zhang growth on one-dimensional flat substrates [J].
Oliveira, T. J. ;
Ferreira, S. C. ;
Alves, S. G. .
PHYSICAL REVIEW E, 2012, 85 (01)
[40]   Emergent Kardar-Parisi-Zhang Phase in Quadratically Driven Condensates [J].
Diessel, Oriana K. ;
Diehl, Sebastian ;
Chiocchetta, Alessio .
PHYSICAL REVIEW LETTERS, 2022, 128 (07)