Coupled Kardar-Parisi-Zhang Equations in One Dimension

被引:37
作者
Ferrari, Patrik L. [1 ]
Sasamoto, Tomohiro [2 ,3 ]
Spohn, Herbert [3 ]
机构
[1] Univ Bonn, Inst Appl Math, D-53115 Bonn, Germany
[2] Chiba Univ, Dept Math, Inage Ku, Chiba 2638522, Japan
[3] Tech Univ Munich, Zentrum Math, D-85747 Garching, Germany
关键词
KPZ equation; Universality; Scaling functions; Interacting particle system; Exclusion processes; Matrix product; TRANSLATIONAL INVARIANCE; UNIVERSAL FLUCTUATIONS; SPONTANEOUS BREAKING; STATIONARY STATES; DYNAMICS; LIMIT; INTERFACES; TURBULENCE; SYSTEMS; NOISE;
D O I
10.1007/s10955-013-0842-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Over the past years our understanding of the scaling properties of the solutions to the one-dimensional KPZ equation has advanced considerably, both theoretically and experimentally. In our contribution we export these insights to the case of coupled KPZ equations in one dimension. We establish equivalence with nonlinear fluctuating hydrodynamics for multi-component driven stochastic lattice gases. To check the predictions of the theory, we perform Monte Carlo simulations of the two-component AHR model. Its steady state is computed using the matrix product ansatz. Thereby all coefficients appearing in the coupled KPZ equations are deduced from the microscopic model. Time correlations in the steady state are simulated and we confirm not only the scaling exponent, but also the scaling function and the non-universal coefficients.
引用
收藏
页码:377 / 399
页数:23
相关论文
共 50 条
[21]   Half-Space Stationary Kardar-Parisi-Zhang Equation [J].
Barraquand, Guillaume ;
Krajenbrink, Alexandre ;
Le Doussal, Pierre .
JOURNAL OF STATISTICAL PHYSICS, 2020, 181 (04) :1149-1203
[22]   Kardar-Parisi-Zhang universality of the Nagel-Schreckenberg model [J].
de Gier, Jan ;
Schadschneider, Andreas ;
Schmidt, Johannes ;
Schuetz, Gunter M. .
PHYSICAL REVIEW E, 2019, 100 (05)
[23]   Kardar-Parisi-Zhang Scaling in Time-Crystalline Matter [J].
Daviet, Romain ;
Zelle, Carl Philipp ;
Asadollahi, Armin ;
Diehl, Sebastian .
PHYSICAL REVIEW LETTERS, 2025, 135 (04)
[24]   Logarithmic or algebraic: Roughening of an active Kardar-Parisi-Zhang surface [J].
Jana, Debayan ;
Haldar, Astik ;
Basu, Abhik .
PHYSICAL REVIEW E, 2024, 109 (03)
[25]   Random geometry and the Kardar-Parisi-Zhang universality class [J].
Santalla, Silvia N. ;
Rodriguez-Laguna, Javier ;
LaGatta, Tom ;
Cuerno, Rodolfo .
NEW JOURNAL OF PHYSICS, 2015, 17
[26]   Exact Solution for the Stationary Kardar-Parisi-Zhang Equation [J].
Imamura, Takashi ;
Sasamoto, Tomohiro .
PHYSICAL REVIEW LETTERS, 2012, 108 (19)
[27]   Jointly invariant measures for the Kardar-Parisi-Zhang equation [J].
Groathouse, Sean ;
Rassoul-Agha, Firas ;
Seppalainen, Timo ;
Sorensen, Evan .
PROBABILITY THEORY AND RELATED FIELDS, 2025, 192 (1-2) :303-372
[28]   Competing Universalities in Kardar-Parisi-Zhang Growth Models [J].
Saberi, Abbas Ali ;
Dashti-Naserabadi, Hor ;
Krug, Joachim .
PHYSICAL REVIEW LETTERS, 2019, 122 (04)
[29]   The Kardar-Parisi-Zhang equation and its matrix generalization [J].
Bork, L. V. ;
Ogarkov, S. L. .
THEORETICAL AND MATHEMATICAL PHYSICS, 2014, 178 (03) :359-373
[30]   Lattice duality for the compact Kardar-Parisi-Zhang equation [J].
Sieberer, L. M. ;
Wachtel, G. ;
Altman, E. ;
Diehl, S. .
PHYSICAL REVIEW B, 2016, 94 (10)