Coupled Kardar-Parisi-Zhang Equations in One Dimension

被引:37
|
作者
Ferrari, Patrik L. [1 ]
Sasamoto, Tomohiro [2 ,3 ]
Spohn, Herbert [3 ]
机构
[1] Univ Bonn, Inst Appl Math, D-53115 Bonn, Germany
[2] Chiba Univ, Dept Math, Inage Ku, Chiba 2638522, Japan
[3] Tech Univ Munich, Zentrum Math, D-85747 Garching, Germany
关键词
KPZ equation; Universality; Scaling functions; Interacting particle system; Exclusion processes; Matrix product; TRANSLATIONAL INVARIANCE; UNIVERSAL FLUCTUATIONS; SPONTANEOUS BREAKING; STATIONARY STATES; DYNAMICS; LIMIT; INTERFACES; TURBULENCE; SYSTEMS; NOISE;
D O I
10.1007/s10955-013-0842-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Over the past years our understanding of the scaling properties of the solutions to the one-dimensional KPZ equation has advanced considerably, both theoretically and experimentally. In our contribution we export these insights to the case of coupled KPZ equations in one dimension. We establish equivalence with nonlinear fluctuating hydrodynamics for multi-component driven stochastic lattice gases. To check the predictions of the theory, we perform Monte Carlo simulations of the two-component AHR model. Its steady state is computed using the matrix product ansatz. Thereby all coefficients appearing in the coupled KPZ equations are deduced from the microscopic model. Time correlations in the steady state are simulated and we confirm not only the scaling exponent, but also the scaling function and the non-universal coefficients.
引用
收藏
页码:377 / 399
页数:23
相关论文
共 50 条
  • [1] Coupled Kardar-Parisi-Zhang Equations in One Dimension
    Patrik L. Ferrari
    Tomohiro Sasamoto
    Herbert Spohn
    Journal of Statistical Physics, 2013, 153 : 377 - 399
  • [2] Symmetries and scaling in generalised coupled conserved Kardar-Parisi-Zhang equations
    Banerjee, Tirthankar
    Basu, Abhik
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2018,
  • [3] Characteristic Sign Renewals of Kardar-Parisi-Zhang Fluctuations
    Takeuchi, Kazumasa A.
    Akimoto, Takuma
    JOURNAL OF STATISTICAL PHYSICS, 2016, 164 (05) : 1167 - 1182
  • [4] Sinc noise for the Kardar-Parisi-Zhang equation
    Niggemann, Oliver
    Hinrichsen, Haye
    PHYSICAL REVIEW E, 2018, 97 (06)
  • [5] Existence of the upper critical dimension of the Kardar-Parisi-Zhang equation
    Katzav, E
    Schwartz, M
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2002, 309 (1-2) : 69 - 78
  • [6] Dimensional crossover in Kardar-Parisi-Zhang growth
    Carrasco, Ismael S. S.
    Oliveira, Tiago J.
    PHYSICAL REVIEW E, 2024, 109 (04)
  • [7] Minimum action method for the Kardar-Parisi-Zhang equation
    Fogedby, Hans C.
    Ren, Weiqing
    PHYSICAL REVIEW E, 2009, 80 (04)
  • [8] Kardar-Parisi-Zhang scaling in the Hubbard model
    Moca, Caetaelin Pascu
    Werner, Miklos Antal
    Valli, Angelo
    Prosen, Tomaz
    Zarand, Gergely
    PHYSICAL REVIEW B, 2023, 108 (23)
  • [9] Universal large-deviation function of the Kardar-Parisi-Zhang equation in one dimension
    Derrida, B
    Appert, C
    JOURNAL OF STATISTICAL PHYSICS, 1999, 94 (1-2) : 1 - 30
  • [10] Recent developments on the Kardar-Parisi-Zhang surface-growth equation
    Wio, Horacio S.
    Escudero, Carlos
    Revelli, Jorge A.
    Deza, Roberto R.
    de la Lama, Marta S.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2011, 369 (1935): : 396 - 411