Estimating Model Parameters with Ensemble-Based Data Assimilation: Parameter Covariance Treatment

被引:25
作者
Jose Ruiz, Juan [1 ,2 ]
Pulido, Manuel [1 ,3 ]
Miyoshi, Takemasa [4 ,5 ]
机构
[1] Univ Nacl Nordeste, FACENA, Dept Phys, Corrientes, Argentina
[2] Consejo Nacl Invest Cient & Tecn, UMI IFAECl CNRS, CIMA, Buenos Aires, DF, Argentina
[3] Consejo Nacl Invest Cient & Tecn, UMI IFAECl CNRS, IMIT, Buenos Aires, DF, Argentina
[4] Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD USA
[5] RIKEN, Adv Inst Computat Sci, Wako, Saitama, Japan
关键词
data assimilation; parameter estimation; ensemble Kalman filter; error covariance; KALMAN FILTER; STATE;
D O I
10.2151/jmsj.2013-403
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
In this work, various methods for the estimation of the parameter uncertainty and the covariance between the parameters and the state variables are investigated using the local ensemble transform Kalman filter (LETKF). Two methods are compared for the estimation of the covariances between the state variables and the parameters: one using a single ensemble for the simultaneous estimation of model state and parameters, and the other using two separate ensembles; for the initial conditions and for the parameters. It is found that the method which uses two ensembles produces a more accurate representation of the covariances between observed variables and parameters, although this does not produce an improvement of the parameter or state estimation. The experiments show that the former method with a single ensemble is more efficient and produces results as accurate as the ones obtained with the two separate ensembles method. The impact of parameter ensemble spread upon the parameter estimation and its associated analysis is also investigated. A new approach to the optimization of the estimated parameter ensemble spread (EPES) is proposed in this work. This approach preserves the structure of the analysis error covariance matrix of the augmented state vector. Results indicate that the new approach determines the value of the parameter ensemble spread that produces the lowest errors in the analysis and in the estimated parameters. A simple low-resolution atmospheric general circulation model known as SPEEDY is used for the evaluation of the different parameter estimation techniques.
引用
收藏
页码:453 / 469
页数:17
相关论文
共 23 条
[1]   Ensemble-based simultaneous state and parameter estimation in a two-dimensional sea-breeze model [J].
Aksoy, Altug ;
Zhang, Fuqing ;
Nielsen-Gammon, John W. .
MONTHLY WEATHER REVIEW, 2006, 134 (10) :2951-2970
[2]  
Anderson JL, 1999, MON WEATHER REV, V127, P2741, DOI 10.1175/1520-0493(1999)127<2741:AMCIOT>2.0.CO
[3]  
2
[5]  
Fertig EJ, 2007, TELLUS A, V59, P719, DOI [10.1111/j.1600-0870.2007.00260.x, 10.1111/J.1600-0870.2007.00260.x]
[6]   Observation bias correction with an ensemble Kalman filter [J].
Fertig, Elana J. ;
Baek, Seung-Jong ;
Hunt, Brian R. ;
Ott, Edward ;
Szunyogh, Istvan ;
Aravequia, Jose A. ;
Kalnay, Eugenia ;
Li, Hong ;
Liu, Junjie .
TELLUS SERIES A-DYNAMIC METEOROLOGY AND OCEANOGRAPHY, 2009, 61 (02) :210-226
[7]   Balance and Ensemble Kalman Filter Localization Techniques [J].
Greybush, Steven J. ;
Kalnay, Eugenia ;
Miyoshi, Takemasa ;
Ide, Kayo ;
Hunt, Brian R. .
MONTHLY WEATHER REVIEW, 2011, 139 (02) :511-522
[8]   On stochastic parameter estimation using data assimilation [J].
Hansen, James A. ;
Penland, Cecile .
PHYSICA D-NONLINEAR PHENOMENA, 2007, 230 (1-2) :88-98
[9]  
Hunt B., 2007, PHYSICA D, V77, P437
[10]   Estimating Model Parameters with Ensemble-Based Data Assimilation: A Review [J].
Jose Ruiz, Juan ;
Pulido, Manuel ;
Miyoshi, Takemasa .
JOURNAL OF THE METEOROLOGICAL SOCIETY OF JAPAN, 2013, 91 (02) :79-99