Geodesic forests in last-passage percolation

被引:3
作者
Lopez, Sergio I. [1 ]
Pimentel, Leandro P. R. [2 ]
机构
[1] Univ Nacl Autonoma Mexico, Fac Ciencias, Dept Matemat, Mexico City 04510, DF, Mexico
[2] Univ Fed Rio de Janeiro, Inst Matemat, Caixa Postal 68530, BR-21941909 Rio De Janeiro, RJ, Brazil
关键词
Last-passage percolation; Geodesic forest; Competition interface; Airy process; MODEL;
D O I
10.1016/j.spa.2016.06.009
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The aim of this article is to study the forest composed by point-to-line geodesics in the last-passage percolation model with exponential weights. We will show that the location of the root can be described in terms of the maxima of a random walk, whose distribution will depend on the geometry of the substrate (line). For flat substrates, we will get power law behaviour of the height function, study its scaling limit, and describe it in terms of variational problems involving the Airy process. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:304 / 324
页数:21
相关论文
共 20 条
  • [1] THE TASEP SPEED PROCESS
    Amir, Gideon
    Angel, Omer
    Valko, Benedek
    [J]. ANNALS OF PROBABILITY, 2011, 39 (04) : 1205 - 1242
  • [2] Antunovid T., 2014, ARXIV14104944
  • [3] On the local fluctuations of last-passage percolation models
    Cator, Eric
    Pimentel, Leandro P. R.
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2015, 125 (02) : 538 - 551
  • [4] BUSEMANN FUNCTIONS AND THE SPEED OF A SECOND CLASS PARTICLE IN THE RAREFACTION FAN
    Cator, Eric
    Pimentel, Leandro P. R.
    [J]. ANNALS OF PROBABILITY, 2013, 41 (04) : 2401 - 2425
  • [5] Busemann functions and equilibrium measures in last passage percolation models
    Cator, Eric
    Pimentel, Leandro P. R.
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2012, 154 (1-2) : 89 - 125
  • [6] Corwin I, 2011, ARXIV11033422
  • [7] Limit Processes for TASEP with Shocks and Rarefaction Fans
    Corwin, Ivan
    Ferrari, Patrik L.
    Peche, Sandrine
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2010, 140 (02) : 232 - 267
  • [8] Coexistence probability in the last passage percolation model is 6-8 log 2
    Coupier, David
    Heinrich, Philippe
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2012, 48 (04): : 973 - 988
  • [9] MULTIPLE GEODESICS WITH THE SAME DIRECTION
    Coupier, David
    [J]. ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2011, 16 : 517 - 527
  • [10] The two-type richardson model with unbounded initial configurations
    Deijfen, Maria
    Haggstrom, Olle
    [J]. ANNALS OF APPLIED PROBABILITY, 2007, 17 (5-6) : 1639 - 1656