GLOBAL STRICHARTZ ESTIMATES FOR THE SCHRODINGER EQUATION WITH NON ZERO BOUNDARY CONDITIONS AND APPLICATIONS

被引:13
作者
Audiard, Corentin [1 ]
机构
[1] Univ Paris Diderot SPC, Sorbonne Univ, CNRS, Lab Jacques Louis Lions, F-75005 Paris, France
关键词
Schrodinger equation; dispersive estimates; boundary conditions; Kreiss-Lopatinskii; compatibility condition; WELL-POSEDNESS; SCATTERING; MANIFOLDS; STABILITY; EXTERIOR;
D O I
10.5802/aif.3238
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the Schrodinger equation on a half space in any dimension with a class of nonhomogeneous boundary conditions including Dirichlet, Neuman and the so-called transparent boundary conditions. Building upon recent local in time Strichartz estimates (for Dirichlet boundary conditions), we obtain global Strichartz estimates for initial data in H-s, 0 <= s <= 2 and boundary data in a natural space H-s. For s >= 1/2, the issue of compatibility conditions requires a thorough analysis of the H-s space. As an application we solve nonlinear Schrodinger equations and construct global asymptotically linear solutions for small data. A discussion is included on the appropriate notion of scattering in this framework, and the optimality of the H-s space.
引用
收藏
页码:31 / 80
页数:50
相关论文
共 32 条
[1]   ABSORBING BOUNDARY CONDITIONS FOR THE TWO-DIMENSIONAL SCHRODINGER EQUATION WITH AN EXTERIOR POTENTIAL. PART I: CONSTRUCTION AND A PRIORI ESTIMATES [J].
Antoine, Xavier ;
Besse, Christophe ;
Klein, Pauline .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2012, 22 (10)
[2]   STRICHARTZ INEQUALITIES FOR LIPSCHITZ METRICS ON MANIFOLDS AND NONLINEAR SCHRODINGER EQUATION ON DOMAINS [J].
Anton, Ramona .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2008, 136 (01) :27-65
[3]   ON THE BOUNDARY VALUE PROBLEM FOR THE SCHRODINGER EQUATION COMPATIBILITY CONDITIONS AND GLOBAL EXISTENCE [J].
Audiard, Corentin .
ANALYSIS & PDE, 2015, 8 (05) :1113-1143
[4]   Non-Homogeneous Boundary Value Problems for Linear Dispersive Equations [J].
Audiard, Corentin .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2012, 37 (01) :1-37
[5]  
Benzoni-Gavage S., 2007, Multidimensional Hyperbolic Partial Differential Equations. Oxford Mathematical Monographs
[6]   On Strichartz estimates for Schrodinger operators in compact manifolds with boundary [J].
Blair, Matthew D. ;
Smith, Hart F. ;
Sogge, Christopher D. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (01) :247-256
[7]  
BONA J.L., 2016, J MATH PURES APPL
[8]   A non-homogeneous boundary-value problem for the Korteweg-de Vries equation in a quarter plane [J].
Bona, JL ;
Sun, SM ;
Zhang, BY .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 354 (02) :427-490
[9]  
Bourgain J., 1993, GEOM FUNCT ANAL, V3, P209, DOI DOI 10.1007/BF01895688
[10]   On nonlinear Schrodinger equations in exterior domains [J].
Burq, N ;
Gérard, P ;
Tzvetkov, N .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2004, 21 (03) :295-318