EXISTENCE OF NODAL SOLUTION FOR SEMI-LINEAR ELLIPTIC EQUATIONS WITH CRITICAL SOBOLEV EXPONENT ON SINGULAR MANIFOLD

被引:4
作者
Liu, Xiaochun [1 ]
Mei, Yuan [1 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
关键词
Cone Sobolev space; critical exponent; nodal solution;
D O I
10.1016/S0252-9602(13)60018-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we prove that semi-linear elliptic equations with critical cone Sobolev exponents possess a nodal solution.
引用
收藏
页码:543 / 555
页数:13
相关论文
共 13 条
[1]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[2]  
[Anonymous], 1986, CBMS REG C SER MATH
[3]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[4]  
Chen H, ANN GLOBAL ANAL GEOM, V39, P27
[5]   Cone Sobolev inequality and Dirichlet problem for nonlinear elliptic equations on a manifold with conical singularities [J].
Chen, Hua ;
Liu, Xiaochun ;
Wei, Yawei .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2012, 43 (3-4) :463-484
[6]  
Evans LC, 2010, Partial Differential Equations
[7]  
Liu Xiaochun, SEMILINEAR EQU UNPUB
[8]   Ellipticity and invertibility in the cone algebra on Lp-Sobolev spaces [J].
Schrohe, E ;
Seiler, J .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2001, 41 (01) :93-114
[9]  
Schulze B. W., 1998, BOUNDARY VALUE PROBL
[10]  
Valeriola S, EXISTENCE NODAL SOLU