The preservation of classes of discrete distributions under convolution and mixing

被引:4
作者
Pavlova, KP [1 ]
Cai, J
Willmot, GE
机构
[1] Univ Western Ontario, Dept Stat & Actuarial Sci, London, ON N6A 5B7, Canada
[2] Univ Waterloo, Dept Stat & Actuarial Sci, Waterloo, ON N2L 3G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
counting random variable; discrete distribution; convolution; mixing; discrete equilibrium distribution; zero-truncated discrete distribution; discrete hazard rate; discrete failure rate; discrete mean residual lifetime; inclusion; preservation;
D O I
10.1016/j.insmatheco.2005.10.001
中图分类号
F [经济];
学科分类号
02 ;
摘要
In this paper we consider some widely utilized classes of discrete distributions and aim to provide a systematic overview about their preservation under convolution and mixing. Moreover, inclusion properties among these classes are discussed. This paper will serve as a detailed reference for the study and applications of the preservation of the classes of discrete distributions. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:391 / 405
页数:15
相关论文
共 50 条
[41]   Convolution-Dominated Operators on Discrete Groups [J].
Gero Fendler ;
Karlheinz Gröchenig ;
Michael Leinert .
Integral Equations and Operator Theory, 2008, 61 :493-509
[42]   Convolution-dominated operators on discrete groups [J].
Fendler, Gero ;
Groechenig, Karlheinz ;
Leinert, Michael .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2008, 61 (04) :493-509
[43]   Long-only equal risk contribution portfolios for CVaR under discrete distributions [J].
Mausser, Helmut ;
Romanko, Oleksandr .
QUANTITATIVE FINANCE, 2018, 18 (11) :1927-1945
[44]   Constructions of discrete bivariate distributions [J].
Lai, C. D. .
Advances in Distribution Theory, Order Statistics, and Inference, 2006, :29-58
[45]   Mode Estimation for Discrete Distributions [J].
Dutta, S. ;
Goswami, A. .
MATHEMATICAL METHODS OF STATISTICS, 2010, 19 (04) :374-384
[46]   Convolution, Fourier analysis, and distributions generated by Riesz bases [J].
Michael Ruzhansky ;
Niyaz Tokmagambetov .
Monatshefte für Mathematik, 2018, 187 :147-170
[47]   Measure Convolution Semigroups and Noninfinitely Divisible Probability Distributions [J].
A. Wulfsohn .
Journal of Mathematical Sciences, 2005, 131 (3) :5682-5696
[48]   Convolution, Fourier analysis, and distributions generated by Riesz bases [J].
Ruzhansky, Michael ;
Tokmagambetov, Niyaz .
MONATSHEFTE FUR MATHEMATIK, 2018, 187 (01) :147-170
[49]   Convolution product formula for associated homogeneous distributions on R [J].
Franssens, Ghislain R. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2011, 34 (06) :703-727
[50]   Hankel transformation and Hankel convolution of tempered Beurling distributions [J].
Belhadj, M ;
Betancor, JJ .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2001, 31 (04) :1171-1203