Scaling behaviour in Rayleigh-Benard convection with and without rotation

被引:61
|
作者
King, E. M. [1 ,2 ]
Stellmach, S. [3 ]
Buffett, B. [1 ]
机构
[1] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[3] WWU Munster, Inst Geophys, D-48149 Munster, Germany
基金
美国国家科学基金会;
关键词
Benard convection; convection; geophysical and geological flows; VISCOUS BOUNDARY-LAYER; SPHERICAL CONVECTION; THERMAL-CONVECTION; HEAT-TRANSPORT; TURBULENT; TEMPERATURE; DYNAMICS; FLUID; NUMBERS; PLUMES;
D O I
10.1017/jfm.2012.586
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Rotating Rayleigh-Benard convection provides a simplified dynamical analogue for many planetary and stellar fluid systems. Here, we use numerical simulations of rotating Rayleigh-Benard convection to investigate the scaling behaviour of five quantities over a range of Rayleigh (10(3) less than or similar to Ra less than or similar to 10(9)), Prandtl (1 <= Pr <= 100) and Ekman (10(-6) <= E <= infinity) numbers. The five quantities of interest are the viscous and thermal boundary layer thicknesses, delta(v) and delta(T), mean temperature gradients, beta, characteristic horizontal length scales, l, and flow speeds, Pe. Three parameter regimes in which different scalings apply are quantified: non-rotating, weakly rotating and rotationally constrained. In the rotationally constrained regime, all five quantities are affected by rotation. In the weakly rotating regime, delta(T), beta and Pe, roughly conform to their non-rotating behaviour, but delta(v) and l are still strongly affected by the Coriolis force. A summary of scaling results is given in table 2.
引用
收藏
页码:449 / 471
页数:23
相关论文
共 50 条
  • [1] Scaling in Rayleigh-Benard convection
    Lindborg, Erik
    JOURNAL OF FLUID MECHANICS, 2023, 956
  • [2] Scaling Laws in Rayleigh-Benard Convection
    Plumley, Meredith
    Julien, Keith
    EARTH AND SPACE SCIENCE, 2019, 6 (09) : 1580 - 1592
  • [3] Turbulent Rotating Rayleigh-Benard Convection
    Ecke, Robert E.
    Shishkina, Olga
    ANNUAL REVIEW OF FLUID MECHANICS, 2023, 55 : 603 - 638
  • [4] Sidewall effects in Rayleigh-Benard convection
    Stevens, Richard J. A. M.
    Lohse, Detlef
    Verzicco, Roberto
    JOURNAL OF FLUID MECHANICS, 2014, 741 : 1 - 27
  • [5] Scaling behaviour of small-scale dynamos driven by Rayleigh-Benard convection
    Yan, M.
    Tobias, S. M.
    Calkins, M. A.
    JOURNAL OF FLUID MECHANICS, 2021, 915
  • [6] Boundary layer structure in turbulent Rayleigh-Benard convection
    Shi, Nan
    Emran, Mohammad S.
    Schumacher, Joerg
    JOURNAL OF FLUID MECHANICS, 2012, 706 : 5 - 33
  • [7] Boundary layer fluctuations in turbulent Rayleigh-Benard convection
    Wang, Yin
    Xu, Wei
    He, Xiaozhou
    Yik, Hiufai
    Wang, Xiaoping
    Schumacher, Jorg
    Tong, Penger
    JOURNAL OF FLUID MECHANICS, 2018, 840 : 408 - 431
  • [8] The role of Stewartson and Ekman layers in turbulent rotating Rayleigh-Benard convection
    Kunnen, Rudie P. J.
    Stevens, Richard J. A. M.
    Overkamp, Jim
    Sun, Chao
    van Heijst, GertJan F.
    Clercx, Herman J. H.
    JOURNAL OF FLUID MECHANICS, 2011, 688 : 422 - 442
  • [9] Turbulent Rayleigh-Benard convection in an annular cell
    Zhu, Xu
    Jiang, Lin-Feng
    Zhou, Quan
    Sun, Chao
    JOURNAL OF FLUID MECHANICS, 2019, 869
  • [10] Diffusion-Free Scaling in Rotating Spherical Rayleigh-Benard Convection
    Wang, Guiquan
    Santelli, Luca
    Lohse, Detlef
    Verzicco, Roberto
    Stevens, Richard J. A. M.
    GEOPHYSICAL RESEARCH LETTERS, 2021, 48 (20)