Scanning Probe Microscopy of Nanocomposite Membranes and Dynamic Organization

被引:6
作者
Montano, Gabriel A. [1 ]
Adams, Peter G. [1 ]
Xiao, Xiaoyin [2 ]
Goodwin, Peter M. [1 ]
机构
[1] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, POB 1663, Los Alamos, NM 87545 USA
[2] Sandia Natl Labs, Albuquerque, NM 87185 USA
关键词
atomic force microscopy; programmable membrane-based nanocomposites; lipid bilayer assemblies; polymer membrane assemblies; nanotechnology; SUPPORTED LIPID-BILAYERS; ATOMIC-FORCE MICROSCOPY; PHOTOSYNTHETIC CORE COMPLEX; POLYMER BRUSHES; BLOCK-COPOLYMERS; 3-DIMENSIONAL STRUCTURES; PHOSPHOLIPID-MEMBRANES; CATIONIC NANOPARTICLES; DRUG-DELIVERY; PROTEINS;
D O I
10.1002/adfm.201203429
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Nanocomposite membrane assemblies are a class of materials that incorporate inorganic/organic nanoscale materials, such as fullerenes and gold nanoparticles or nanostructured materials with bio-inspired amphiphilic structures composed of molecules such as lipids or block copolymers. One of the intrigues of such materials is the potential to develop programmable membrane assemblies that mimic biological membrane complexity, dynamics and function. Due to the nanoscale nature of the assemblies, it becomes necessary to understand interactions between these materials with nanoscale resolution. Although many techniques are able to provide information as to the overall organization of membrane-based assemblies, only scanning probe microscopy (SPM) methods allow for a direct visualization of stochastic processes under environmentally relevant conditions. Here, an overview of nanocomposite membrane and thin film architecture investigations is presented with an emphasis on using in situ atomic force microscopy (AFM) in combination with fluorescence microscopy/spectroscopy techniques to understand organization and dynamics, in relation to activities and capabilities at the Center for Integrated Nanotechnologies.
引用
收藏
页码:2576 / 2591
页数:16
相关论文
共 122 条
[1]   Adaptation of intracytoplasmic membranes to altered light intensity in Rhodobacter sphaeroides [J].
Adams, Peter G. ;
Hunter, C. Neil .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2012, 1817 (09) :1616-1627
[2]   Monomeric RC-LH1 core complexes retard LH2 assembly and intracytoplasmic membrane formation in PufX-minus mutants of Rhodobacter sphaeroides [J].
Adams, Peter G. ;
Mothersole, David J. ;
Ng, Irene W. ;
Olsen, John D. ;
Hunter, C. Neil .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2011, 1807 (09) :1044-1055
[3]   Patterning silver nanocubes in monolayers using phase separated lipids as templates [J].
Ahamad, Nur ;
Prezgot, Daniel ;
Ianoul, Anatoli .
JOURNAL OF NANOPARTICLE RESEARCH, 2012, 14 (02)
[4]   Self-assembly of block copolymer thin films [J].
Albert, Julie N. L. ;
Epps, Thomas H., III .
MATERIALS TODAY, 2010, 13 (06) :24-33
[5]   The native architecture of a photosynthetic membrane [J].
Bahatyrova, S ;
Frese, RN ;
Siebert, CA ;
Olsen, JD ;
van der Werf, KO ;
van Grondelle, R ;
Niederman, RA ;
Bullough, PA ;
Otto, C ;
Hunter, CN .
NATURE, 2004, 430 (7003) :1058-1062
[6]   Liposome and Lipid Bilayer Arrays Towards Biosensing Applications [J].
Bally, Marta ;
Bailey, Kelly ;
Sugihara, Kaori ;
Grieshaber, Dorothee ;
Voeroes, Janos ;
Stadler, Brigitte .
SMALL, 2010, 6 (22) :2481-2497
[7]   Biomimetic supported membranes from amphiphilic block copolymers [J].
Belegrinou, Serena ;
Dorn, Jan ;
Kreiter, Max ;
Kita-Tokarczyk, Katarzyna ;
Sinner, Eva-Kathrin ;
Meier, Wolfgang .
SOFT MATTER, 2010, 6 (01) :179-186
[8]   ATOMIC FORCE MICROSCOPE [J].
BINNIG, G ;
QUATE, CF ;
GERBER, C .
PHYSICAL REVIEW LETTERS, 1986, 56 (09) :930-933
[9]   Size-selective organization of enthalpic compatibilized nanocrystals in ternary block copolymer/particle mixtures [J].
Bockstaller, MR ;
Lapetnikov, Y ;
Margel, S ;
Thomas, EL .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (18) :5276-5277
[10]  
Borm P. J., INT J NANOMED, V3, P133