Approximative Green's Functions on Surfaces and Pointwise Error Estimates for the Finite Element Method

被引:1
作者
Kroener, Heiko [1 ]
机构
[1] Univ Hamburg, Fachbereich Math, Bundesstr 55, D-20146 Hamburg, Germany
关键词
Finite Elements; Green's Function; Two-Dimensional Surface; A Priori Error Estimates; PARABOLIC DIFFERENTIAL-EQUATIONS; TIME DISCRETIZATION; ELLIPTIC PROBLEMS; CONVERGENCE; ORDER;
D O I
10.1515/cmam-2016-0036
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paperwe give a new proof of the L-infinity-error estimate for the finite element approximation of the Laplace-Beltrami equation with an additional lower order term on a surface. While the proof available in the literature uses the method of perturbed bilinear forms from Schatz and Wahlbin, we adapt Scott's proof from an Euclidean setting to the surface case. Furthermore, in contrast to the literature we use an approximative Green's function on the surface instead of an exact Green's function which is obtained by lifting an Euclidean Green's function locally from the tangent plane to the surface.
引用
收藏
页码:51 / 64
页数:14
相关论文
共 23 条
  • [1] [Anonymous], 2008, TEXTS APPL MATH
  • [2] Variational problems and partial differential equations on implicit surfaces
    Bertalmío, M
    Cheng, LT
    Osher, S
    Sapiro, G
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2001, 174 (02) : 759 - 780
  • [3] An h-narrow band finite-element method for elliptic equations on implicit surfaces
    Deckelnick, Klaus
    Dziuk, Gerhard
    Elliott, Charles M.
    Heine, Claus-Justus
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2010, 30 (02) : 351 - 376
  • [4] Analysis of the discontinuous Galerkin method for elliptic problems on surfaces
    Dedner, Andreas
    Madhavan, Pravin
    Stinner, Bjoern
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2013, 33 (03) : 952 - 973
  • [5] HIGHER-ORDER FINITE ELEMENT METHODS AND POINTWISE ERROR ESTIMATES FOR ELLIPTIC PROBLEMS ON SURFACES
    Demlow, Alan
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (02) : 805 - 827
  • [6] Dziuk G, 2007, J COMPUT MATH, V25, P385
  • [7] Runge-Kutta time discretization of parabolic differential equations on evolving surfaces
    Dziuk, G.
    Lubich, Ch.
    Mansour, D.
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2012, 32 (02) : 394 - 416
  • [8] DZIUK G, 1988, LECT NOTES MATH, V1357, P142
  • [9] Dziuk G., 2013, SIAM J NUMER ANAL, V50, P2677
  • [10] Finite element methods for surface PDEs
    Dziuk, Gerhard
    Elliott, Charles M.
    [J]. ACTA NUMERICA, 2013, 22 : 289 - 396