A flexible triboelectric-piezoelectric hybrid nanogenerator based on P(VDF-TrFE) nanofibers and PDMS/MWCNT for wearable devices

被引:165
|
作者
Wang, Xingzhao [1 ,2 ]
Yang, Bin [1 ]
Liu, Jingquan [1 ]
Zhu, Yanbo [1 ]
Yang, Chunsheng [1 ]
He, Qing [1 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Micro Nano Elect, Natl Key Lab Sci & Technol Micro Nano Fabricat, Shanghai 200240, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Biomed Engn, Shanghai 200240, Peoples R China
来源
SCIENTIFIC REPORTS | 2016年 / 6卷
关键词
POWER SOURCE; ENERGY; SENSOR; VIBRATION; PERFORMANCE; GENERATOR; BATTERY; DRIVEN; PVDF;
D O I
10.1038/srep36409
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper studied and realized a flexible nanogenerator based on P(VDF-TrFE) nanofibers and PDMS/MWCNT thin composite membrane, which worked under triboelectric and piezoelectric hybrid mechanisms. The P(VDF-TrFE) nanofibers as a piezoelectric functional layer and a triboelectric friction layer are formed by electrospinning process. In order to improve the performance of triboelectric nanogenerator, the multiwall carbon nanotubes (MWCNT) is doped into PDMS patterned films as the other flexible friction layer to increase the initial capacitance. The flexible nanogenerator is fabricated by low cost MEMS processes. Its output performance is characterized in detail and structural optimization is performed. The device's output peak-peak voltage, power and power density under triboelectric mechanism are 25 V, 98.56 mu W and 1.98 mW/cm(3) under the pressure force of 5 N, respectively. The output peak-peak voltage, power and power density under piezoelectric working principle are 2.5 V, 9.74 mu W, and 0.689 mW/cm(3) under the same condition, respectively. We believe that the proposed flexible, biocompatible, lightweight, low cost nanogenerator will supply effective power energy sustainably for wearable devices in practical applications.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] A wave-shaped hybrid piezoelectric and triboelectric nanogenerator based on P(VDF-TrFE) nanofibers
    Chen, Xuexian
    Han, Mengdi
    Chen, Haotian
    Cheng, Xiaoliang
    Song, Yu
    Su, Zongming
    Jiang, Yonggang
    Zhang, Haixia
    NANOSCALE, 2017, 9 (03) : 1263 - 1270
  • [2] Improved MgO/P(VDF-TrFE) Piezoelectric Nanogenerator with Flexible Electrode
    Arunguvai, J.
    Lakshmi, P.
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2022, 47 (11) : 14365 - 14375
  • [3] A Flexible Piezoelectric-Pyroelectric Hybrid Nanogenerator Based on P(VDF-TrFE) Nanowire Array
    Chen, Xiaoliang
    Shao, Jinyou
    Li, Xiangming
    Tian, Hongmiao
    IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2016, 15 (02) : 295 - 302
  • [4] Flexible and wearable piezoelectric nanogenerators based on P(VDF-TrFE)/SnS nanocomposite micropillar array
    Zhai, Wenchao
    Zhu, Laipan
    Berbille, Andy
    Wang, Zhong Lin
    JOURNAL OF APPLIED PHYSICS, 2021, 129 (09)
  • [5] Aligned P(VDF-TrFE) Nanofibers for Enhanced Piezoelectric Directional Strain Sensing
    Jiang, Yonggang
    Gong, Longlong
    Hu, Xiaohe
    Zhao, Yong
    Chen, Huawei
    Feng, Lin
    Zhang, Deyuan
    POLYMERS, 2018, 10 (04)
  • [6] Ultrathin Epidermal P(VDF-TrFE) Piezoelectric Film for Wearable Electronics
    Tian, Guo
    Tang, Liang
    Zhang, Jieling
    Wang, Shenglong
    Sun, Yue
    Ao, Yong
    Yang, Tao
    Xiong, Da
    Zhang, Hongrui
    Lan, Boling
    Deng, Lin
    Deng, Weili
    Yang, Weiqing
    ACS APPLIED ELECTRONIC MATERIALS, 2023, 5 (03) : 1730 - 1737
  • [7] A flexible, wave-shaped P(VDF-TrFE)/metglas piezoelectric composite for wearable applications
    You, Sujian
    Shi, Huaduo
    Wu, Jingen
    Shan, Liang
    Guo, Shishang
    Dong, Shuxiang
    JOURNAL OF APPLIED PHYSICS, 2016, 120 (23)
  • [8] Flexible composites with Ce-doped BaTiO3/P(VDF-TrFE) nanofibers for piezoelectric device
    Zhuang, Yongyong
    Li, Jinglei
    Hu, Qingyuan
    Han, Shuang
    Liu, Weihua
    Peng, Chang
    Li, Zhong
    Zhang, Lin
    Wei, Xiaoyong
    Xu, Zhuo
    COMPOSITES SCIENCE AND TECHNOLOGY, 2020, 200
  • [9] Flexible and lead-free piezoelectric nanogenerator as self-powered sensor based on electrospinning BZT-BCT/P(VDF-TrFE) nanofibers
    Liu, Jie
    Yang, Bin
    Lu, Lijun
    Wang, Xiaolin
    Li, Xiuyan
    Chen, Xiang
    Liu, Jingquan
    SENSORS AND ACTUATORS A-PHYSICAL, 2020, 303 (303)
  • [10] An interdigital electrode type sensor based on P(VDF-TrFE) nanofibers
    Zhuang, Yongyong
    Han, Shuang
    Liu, Weihua
    Wei, Xiaoyong
    Xu, Zhuo
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 831