HIERARCHICAL SPARSE BRAIN NETWORK ESTIMATION

被引:0
作者
Seghouane, Abd-Krim [1 ]
Khalid, Muhammad Usman [1 ]
机构
[1] Australian Natl Univ, Natl ICT Australia, Canberra Res Lab, Coll Engn & Comp Sci, Canberra, ACT, Australia
来源
2012 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP) | 2012年
关键词
functional MRI; partial correlation; brain network; hierarchy; sparsity; KULLBACK-LEIBLER DIVERGENCE; MODEL SELECTION; FMRI DATA; FUNCTIONAL CONNECTIVITY; REGRESSION; ARCHITECTURE; CRITERION; MRI;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Brain networks explore the dependence relationships between brain regions under consideration through the estimation of the precision matrix. An approach based on linear regression is adopted here for estimating the partial correlation matrix from functional brain imaging data. Knowing that brain networks are sparse and hierarchical, the l(1)-norm penalized regression has been used to estimate sparse brain networks. Although capable of including the sparsity information, the l(1)-norm penalty alone doesn't incorporate the hierarchical structure prior information when estimating brain networks. In this paper, a new l(1) regularization method that applies the sparsity constraint at hierarchical levels is proposed and its implementation described. This hierarchical sparsity approach has the advantage of generating brain networks that are sparse at all levels of the hierarchy. The performance of the proposed approach in comparison to other existing methods is illustrated on real fMRI data.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Identification of sparse neural functional connectivity using penalized likelihood estimation and basis functions
    Song, Dong
    Wang, Haonan
    Tu, Catherine Y.
    Marmarelis, Vasilis Z.
    Hampson, Robert E.
    Deadwyler, Sam A.
    Berger, Theodore W.
    JOURNAL OF COMPUTATIONAL NEUROSCIENCE, 2013, 35 (03) : 335 - 357
  • [42] Smooth Interpolation of Covariance Matrices and Brain Network Estimation
    Ning, Lipeng
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2019, 64 (08) : 3184 - 3193
  • [43] A New Framework to Infer Intra- and Inter-Brain Sparse Connectivity Estimation for EEG Source Information Flow
    Shaw, Laxmi
    Routray, Aurobinda
    IEEE SENSORS JOURNAL, 2018, 18 (24) : 10134 - 10144
  • [44] Contrastive Hierarchical Augmentation Learning for Modeling Cognitive and Multimodal Brain Network
    Shi, Gen
    Yao, Yuxiang
    Zhu, Yifan
    Lin, Xinyue
    Ji, Lanxin
    Liu, Wenjin
    Li, Xuesong
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2024, : 1 - 11
  • [45] Alzheimer's Brain Network Analysis Using Sparse Learning Feature Selection
    Cui, Lixin
    Zhang, Lichi
    Bai, Lu
    Wang, Yue
    Hancock, Edwin R.
    STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, S+SSPR 2020, 2021, 12644 : 184 - 194
  • [46] Outcome Prediction of Unconscious Patients Based on Weighted Sparse Brain Network Construction
    Yu, Renping
    Zhang, Han
    Wu, Xuehai
    Fei, Xuan
    Yang, Qing
    Ma, Zhiwei
    Qi, Zengxin
    Zang, Di
    Tang, Weijun
    Mao, Ying
    Shen, Dinggang
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2023, 27 (01) : 469 - 479
  • [47] Towards Accurate Fetal Brain Parcellation via Hierarchical Network and Loss
    Huang, Shijie
    Zhang, Kai
    Huang, Jiawei
    Kong, Lingnan
    Zhu, Fangmei
    Ding, Zhongxiang
    Chen, Geng
    Shen, Dinggang
    PERINATAL, PRETERM AND PAEDIATRIC IMAGE ANALYSIS, PIPPI 2024, 2025, 14747 : 70 - 81
  • [48] Stationary-Sparse Causality Network Learning
    He, Yuejia
    She, Yiyuan
    Wu, Dapeng
    JOURNAL OF MACHINE LEARNING RESEARCH, 2013, 14 : 3073 - 3104
  • [49] Epileptic brain network mechanisms and neuroimaging techniques for the brain network
    Guo, Yi
    Lin, Zhonghua
    Fan, Zhen
    Tian, Xin
    NEURAL REGENERATION RESEARCH, 2024, 19 (12) : 2637 - 2648
  • [50] Multiple Gaussian graphical estimation with jointly sparse penalty
    Tao, Qinghua
    Huang, Xiaolin
    Wang, Shuning
    Xi, Xiangming
    Li, Li
    SIGNAL PROCESSING, 2016, 128 : 88 - 97