HIERARCHICAL SPARSE BRAIN NETWORK ESTIMATION

被引:0
作者
Seghouane, Abd-Krim [1 ]
Khalid, Muhammad Usman [1 ]
机构
[1] Australian Natl Univ, Natl ICT Australia, Canberra Res Lab, Coll Engn & Comp Sci, Canberra, ACT, Australia
来源
2012 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP) | 2012年
关键词
functional MRI; partial correlation; brain network; hierarchy; sparsity; KULLBACK-LEIBLER DIVERGENCE; MODEL SELECTION; FMRI DATA; FUNCTIONAL CONNECTIVITY; REGRESSION; ARCHITECTURE; CRITERION; MRI;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Brain networks explore the dependence relationships between brain regions under consideration through the estimation of the precision matrix. An approach based on linear regression is adopted here for estimating the partial correlation matrix from functional brain imaging data. Knowing that brain networks are sparse and hierarchical, the l(1)-norm penalized regression has been used to estimate sparse brain networks. Although capable of including the sparsity information, the l(1)-norm penalty alone doesn't incorporate the hierarchical structure prior information when estimating brain networks. In this paper, a new l(1) regularization method that applies the sparsity constraint at hierarchical levels is proposed and its implementation described. This hierarchical sparsity approach has the advantage of generating brain networks that are sparse at all levels of the hierarchy. The performance of the proposed approach in comparison to other existing methods is illustrated on real fMRI data.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Modeling Hierarchical Brain Networks via Volumetric Sparse Deep Belief Network
    Dong, Qinglin
    Ge, Fangfei
    Ning, Qiang
    Zhao, Yu
    Lv, Jinglei
    Huang, Heng
    Yuan, Jing
    Jian, Xi
    Shen, Dinggang
    Liu, Tianming
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2020, 67 (06) : 1739 - 1748
  • [2] Estimation of a sparse group of sparse vectors
    Abramovich, Felix
    Grinshtein, Vadim
    BIOMETRIKA, 2013, 100 (02) : 355 - 370
  • [3] Connectivity Strength-Weighted Sparse Group Representation-Based Brain Network Construction for MCI Classification
    Yu, Renping
    Zhang, Han
    An, Le
    Chen, Xiaobo
    Wei, Zhihui
    Shen, Dinggang
    HUMAN BRAIN MAPPING, 2017, 38 (05) : 2370 - 2383
  • [4] Early development of the functional brain network in newborns
    Nazari, Reza
    Salehi, Mostafa
    BRAIN STRUCTURE & FUNCTION, 2023, 228 (07) : 1725 - 1739
  • [5] Sparse Brain Network Recovery Under Compressed Sensing
    Lee, Hyekyoung
    Lee, Dong Soo
    Kang, Hyejin
    Kim, Boong-Nyun
    Chung, Moo K.
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2011, 30 (05) : 1154 - 1165
  • [6] Sparse Bayesian modeling of hierarchical independent component analysis: Reliable estimation of individual differences in brain networks
    Lukemire, Joshua
    Pagnoni, Giuseppe
    Guo, Ying
    BIOMETRICS, 2023, 79 (04) : 3599 - 3611
  • [7] Sparse Estimation by Exponential Weighting
    Rigollet, Philippe
    Tsybakov, Alexandre B.
    STATISTICAL SCIENCE, 2012, 27 (04) : 558 - 575
  • [8] Learning brain connectivity of Alzheimer's disease by sparse inverse covariance estimation
    Huang, Shuai
    Li, Jing
    Sun, Liang
    Ye, Jieping
    Fleisher, Adam
    Wu, Teresa
    Chen, Kewei
    Reiman, Eric
    NEUROIMAGE, 2010, 50 (03) : 935 - 949
  • [9] Empirical Estimation for Sparse Double-Heteroscedastic Hierarchical Normal Models
    Shantia, Vida
    Ghoreishi, S. K.
    JOURNAL OF STATISTICAL THEORY AND APPLICATIONS, 2020, 19 (02): : 148 - 161
  • [10] Empirical Estimation for Sparse Double-Heteroscedastic Hierarchical Normal Models
    Vida Shantia
    S. K. Ghoreishi
    Journal of Statistical Theory and Applications, 2020, 19 : 148 - 161