Incompleteness and fixed points

被引:0
作者
Sacchetti, L [1 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Studi Filosof & Epistemol, I-00161 Rome, Italy
关键词
provability predicate; modal logic; fixed points; incompleteness; stability;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Our purpose is to present some connections between modal incompleteness and modal logics related to the Godel-Lob logic GL. One of our goals is to prove that for all m, n, k, l is an element of N the logic K + boolean AND(i=m)(n) square(i)(boolean AND(j=k)(l) square(j) p <----> p) --> boolean AND(i=m)(n) square(i) p is incomplete and does not have the fixed point property. As a consequence we shall obtain that the Boolos logic KH does not have the fixed point property.
引用
收藏
页码:15 / 28
页数:14
相关论文
共 10 条
[1]   AN INCOMPLETE SYSTEM OF MODAL LOGIC [J].
BOOLOS, G ;
SAMBIN, G .
JOURNAL OF PHILOSOPHICAL LOGIC, 1985, 14 (04) :351-358
[2]  
Boolos G. S., 1993, LOGIC PROVABILITY
[3]  
CRESSWELL MJ, 1987, J PHILOS LOGIC, V16, P13
[4]  
Feferman S., 1960, Fundamenta Mathematicae, V49, P35, DOI [10.4064/fm-49-1-35-92, DOI 10.4064/FM-49-1-35-92.119]
[5]  
Hughes G. E., 1996, NEW INTRO MODAL LOGI
[6]  
MAGARI R, 1982, B UNIONE MAT ITAL, V6, P359
[7]  
Sacchetti L, 1999, B UNIONE MAT ITAL, V2B, P279
[8]  
SACCHETTI L, IN PRESS NOTRE DAME
[9]  
Smorynski C., 1985, SELF REFERENCE MODAL
[10]  
XU M, 1991, J PHILOS LOGIC, V20, P265