Unified YouTube Video Recommendation via Cross-network Collaboration

被引:66
作者
Yan, Ming [1 ,2 ]
Sang, Jitao [1 ,2 ]
Xu, Changsheng [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing 100190, Peoples R China
[2] China Singapore Inst Digital Media, Singapore 117867, Singapore
来源
ICMR'15: PROCEEDINGS OF THE 2015 ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL | 2015年
关键词
YouTube video recommendation; cross-network collaboration; user modeling;
D O I
10.1145/2671188.2749344
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The ever growing number of videos on YouTube makes recommendation an important way to help users explore interesting videos. Similar to general recommender systems, YouTube video recommendation suffers from typical problems like new user, cold-start, data sparsity, etc. In this paper, we propose a unified YouTube video recommendation solution via cross-network collaboration: users' auxiliary information on Twitter are exploited to address the typical problems in single network-based recommendation solutions. The proposed two-stage solution first transfers user preferences from auxiliary network by learning cross-network behavior correlations, and then integrates the transferred preferences with the observed behaviors on target network in an adaptive fashion. Experimental results show that the proposed cross-network collaborative solution achieves superior performance not only in term of accuracy, but also in improving the diversity and novelty of the recommended videos.
引用
收藏
页码:19 / 26
页数:8
相关论文
共 27 条
[1]  
Abel F, 2011, LECT NOTES COMPUT SC, V6757, P28, DOI 10.1007/978-3-642-22233-7_3
[2]   Fab: Content-based, collaborative recommendation [J].
Balabanovic, M ;
Shoham, Y .
COMMUNICATIONS OF THE ACM, 1997, 40 (03) :66-72
[3]   Latent Dirichlet allocation [J].
Blei, DM ;
Ng, AY ;
Jordan, MI .
JOURNAL OF MACHINE LEARNING RESEARCH, 2003, 3 (4-5) :993-1022
[4]  
BLEI DM, SIGIR 2003, P127
[5]  
Chen Terence., 2012, P 2012 ACM WORKSHOP, P67, DOI DOI 10.1145/2342549.2342565
[6]  
Davidson J., 2010, Proceedings of the fourth ACM Conference on Recommender systems, P293, DOI DOI 10.1145/1864708.1864770
[7]   A content-collaborative recommender that exploits WordNet-based user profiles for neighborhood formation [J].
Degemmis, Marco ;
Lops, Pasquale ;
Semeraro, Giovanni .
USER MODELING AND USER-ADAPTED INTERACTION, 2007, 17 (03) :217-255
[8]  
Deng Zhengyu, ICME 2013, P1
[9]   Item-based top-N recommendation algorithms [J].
Deshpande, M ;
Karypis, G .
ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2004, 22 (01) :143-177
[10]  
Duggan Maeve., 2013, PEW INTERNET AM LIFE