Smooth compactness of self-shrinkers

被引:61
作者
Colding, Tobias H. [1 ]
Minicozzi, William P., II [2 ]
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
[2] Johns Hopkins Univ, Dept Math, Baltimore, MD 21218 USA
基金
美国国家科学基金会;
关键词
Geometric flows; mean curvature flow; self-shrinker; singularities; EMBEDDED MINIMAL-SURFACES; MEAN-CURVATURE FLOW; FIXED GENUS; SPACE; SINGULARITIES; CONSTRUCTION; DISKS;
D O I
10.4171/CMH/260
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a smooth compactness theorem for the space of embedded self-shrinkers in R-3. Since self-shrinkers model singularities in mean curvature flow, this theorem can be thought of as a compactness result for the space of all singularities and it plays an important role in studying generic mean curvature flow.
引用
收藏
页码:463 / 475
页数:13
相关论文
共 31 条
[1]   FIRST VARIATION OF A VARIFOLD [J].
ALLARD, WK .
ANNALS OF MATHEMATICS, 1972, 95 (03) :417-&
[2]   A COMPUTED EXAMPLE OF NONUNIQUENESS OF MEAN-CURVATURE FLOW IN R(3) [J].
ANGENENT, S ;
ILMANEN, T ;
CHOPP, DL .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1995, 20 (11-12) :1937-1958
[3]  
Angenent S.B., 1992, PROGR NONLINEAR DIFF, P21, DOI 10.1007/978-1-4612-0393-3_2
[4]  
[Anonymous], 1983, P CTR MATH ANAL
[5]  
BRAKKE KA, 1978, MATH NOTES, V20
[6]   THE SPACE OF MINIMAL EMBEDDINGS OF A SURFACE INTO A 3-DIMENSIONAL MANIFOLD OF POSITIVE RICCI CURVATURE [J].
CHOI, HI ;
SCHOEN, R .
INVENTIONES MATHEMATICAE, 1985, 81 (03) :387-394
[7]  
Chopp D.L., 1994, EXPT MATH, V3, P1
[8]  
Colding T. H., 1999, Courant Lecture Notes in Mathematics, Courant Lecture Notes in Mathematics, V4
[9]  
Colding T. H., 2005, ARXIV0509647V1MATHDG
[10]  
Colding T. H., 2000, Contemp. Math., V258, P107