Partial Linearization Based Optimization for Multi-class SVM

被引:0
作者
Mohapatra, Pritish [1 ]
Dokania, Puneet Kumar [2 ,3 ]
Jawahar, C. V. [1 ]
Kumar, M. Pawan [4 ]
机构
[1] IIIT Hyderabad, Hyderabad, Andhra Pradesh, India
[2] Cent Supelec, Palaiseau, France
[3] Inria Saclay, Palaiseau, France
[4] Univ Oxford, Oxford, England
来源
COMPUTER VISION - ECCV 2016, PT V | 2016年 / 9909卷
关键词
Multi-class svm; Partial linearization; Optimization;
D O I
10.1007/978-3-319-46454-1_51
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a novel partial linearization based approach for optimizing the multi-class svm learning problem. Our method is an intuitive generalization of the Frank-Wolfe and the exponentiated gradient algorithms. In particular, it allows us to combine several of their desirable qualities into one approach: (i) the use of an expectation oracle (which provides the marginals over each output class) in order to estimate an informative descent direction, similar to exponentiated gradient; (ii) analytical computation of the optimal step-size in the descent direction that guarantees an increase in the dual objective, similar to Frank-Wolfe; and (iii) a block coordinate formulation similar to the one proposed for Frank-Wolfe, which allows us to solve large-scale problems. Using the challenging computer vision problems of action classification, object recognition and gesture recognition, we demonstrate the efficacy of our approach on training multi-class svms with standard, publicly available, machine learning datasets.
引用
收藏
页码:842 / 857
页数:16
相关论文
共 23 条
  • [1] [Anonymous], The PASCAL Visual Object Classes Challenge 2012 (VOC2012) Results
  • [2] [Anonymous], 2013, PROC ICML
  • [3] Collins M, 2008, J MACH LEARN RES, V9, P1775
  • [4] On the algorithmic implementation of multiclass kernel-based vector machines
    Crammer, K
    Singer, Y
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2002, 2 (02) : 265 - 292
  • [5] Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
  • [6] Engel J., 1988, POLYTOMOUS LOGISTIC
  • [7] The Pascal Visual Object Classes (VOC) Challenge
    Everingham, Mark
    Van Gool, Luc
    Williams, Christopher K. I.
    Winn, John
    Zisserman, Andrew
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2010, 88 (02) : 303 - 338
  • [8] Fothergill S., 2012, SIGCHI C HUM FACT CO
  • [9] Frank M., 1956, NAV RES LOG, V3, P95, DOI [10.1002/nav.3800030109, https://doi.org/10.1002/nav.3800030109]
  • [10] Girshick R., 2014, IEEE C COMP VIS PATT, DOI [DOI 10.1109/CVPR.2014.81, 10.1109/CVPR.2014.81]