Heegaard Floer Correction Terms and Dedekind-Rademacher Sums

被引:7
作者
Jabuka, Stanislav [1 ]
Robins, Sinai [2 ]
Wang, Xinli [2 ]
机构
[1] Univ Nevada, Dept Math & Stat, Reno, NV 89557 USA
[2] Nanyang Technol Univ, Sch Phys & Math Sci, Div Math Sci, Singapore 637371, Singapore
基金
美国国家科学基金会;
关键词
D O I
10.1093/imrn/rnr260
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We derive a closed formula for the Heegaard Floer correction terms of lens spaces in terms of the classical Dedekind sum and its generalization, the Dedekind-Rademacher sum. Our proof relies on a reciprocity formula for the correction terms established by Ozsvath and Szabo. A consequence of our result is that the Casson-Walker invariant of a lens space equals the average of its Heegaard Floer correction terms. Additionally, we find an obstruction for the equality and equality with opposite sign, of two correction terms of the same lens space. Using this obstruction we are able to derive an optimal upper bound on the number of vanishing correction terms of lens spaces with square order second cohomology.
引用
收藏
页码:170 / 183
页数:14
相关论文
共 15 条
[1]  
Beck M, 2004, DIMACS SER DISCRET M, V64, P25
[2]  
Beck M., 2007, Computing the Continuous Discretely: Integer-Point Enumeration in Polyhedra
[3]   Knot concordance and Heegaard Floer homology invariants in branched covers [J].
Grigsby, J. Elisenda ;
Ruberman, Daniel ;
Strle, Saso .
GEOMETRY & TOPOLOGY, 2008, 12 :2249-2275
[4]  
Grosswald E., 1972, CARUS MATH MONOGRAPH
[5]  
Jabuka S., 2011, INT J NUMBE IN PRESS
[6]   Order in the concordance group and Heegaard Floer homology [J].
Jabuka, Stanislav ;
Naik, Swatee .
GEOMETRY & TOPOLOGY, 2007, 11 :979-994
[7]  
Knuth D., 1973, Acta Arith, V33, P297, DOI [DOI 10.4064/AA-33-4-297-325, 10.4064/aa-33-4-297-325]
[8]   A Concordance Invariant from the Floer Homology of Double Branched Covers [J].
Manolescu, Ciprian ;
Owens, Brendan .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2007, 2007
[9]   On the Ozsvath-Szabo invariant of negative definite plumbed 3-manifolds [J].
Némethi, A .
GEOMETRY & TOPOLOGY, 2005, 9 :991-1042
[10]   Rational homology spheres and the four-ball genus of knots [J].
Owens, B ;
Strle, S .
ADVANCES IN MATHEMATICS, 2006, 200 (01) :196-216