Optimization of accelerated solvent extraction of ellagitannins in black raspberry seeds using artificial neural network coupled with genetic algorithm

被引:24
作者
Lee, Ga Eun [1 ,2 ,3 ]
Kim, Ryun Hee [1 ,2 ,3 ]
Lim, Taehwan [4 ]
Kim, Jaecheol [1 ,2 ,3 ]
Kim, Suna [5 ]
Kim, Hyoung-Geun [6 ,7 ]
Hwang, Keum Taek [1 ,2 ,3 ]
机构
[1] Seoul Natl Univ, Dept Food & Nutr, Seoul 08826, South Korea
[2] Seoul Natl Univ, Res Inst Human Ecol, Seoul 08826, South Korea
[3] Seoul Natl Univ, BK21 FOUR Educ & Res Team Sustainable Food & Nutr, Seoul 08826, South Korea
[4] Tufts Univ, Dept Biomed Engn, 4 Colby St, Medford, MA 02155 USA
[5] Korea Natl Open Univ, Coll Nat Sci, Div Human Ecol, Seoul 03078, South Korea
[6] Kyung Hee Univ, Grad Sch Biotechnol, Yongin 17104, South Korea
[7] Kyung Hee Univ, Dept Oriental Med Biotechnol, Yongin 17104, South Korea
基金
新加坡国家研究基金会;
关键词
Black raspberry seeds; Ellagitannin; Accelerated solvent extraction; Artificial neural network; Genetic algorithm; Optimization; SANGUIIN H-6; HYDROLYZABLE TANNINS; ELLAGIC ACID; ANTIOXIDANT; IDENTIFICATION; PEDUNCULAGIN; RECEPTOR; WINE; WOOD; L;
D O I
10.1016/j.foodchem.2022.133712
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
This study aimed to identify ellagitannins in black raspberry seeds (BRS) and to optimize accelerated solvent extraction of ellagitannins using an artificial neural network (ANN) coupled with genetic algorithm. Fifteen monomeric and dimeric ellagitannins were identified in BRS. For ANN modeling, extraction time, extraction temperature, and solvent concentration were set as input variables, and total ellagitannin content was set as output variable. The trained ANN had a mean squared error value of 0.0102 and a regression correlation coefficient of 0.9988. The predicted optimal extraction conditions for maximum total ellagitannin content were 63.7% acetone, 4.21 min, and 43.9 degrees C. The actual total ellagitannin content under the optimal extraction conditions was 13.4 +/- 0.0 mg/g dry weight, and the prediction error was 0.75 +/- 0.27%. This study is the first attempt to analyze the composition of ellagitannins in BRS and to determine optimal extraction conditions for maximum total ellagitannin content from BRS.
引用
收藏
页数:9
相关论文
共 50 条
[21]   Optimized Artificial Neural Network for Biosignals Classification Using Genetic Algorithm [J].
Aron A. M. Lima ;
Fábio K. H. de Barros ;
Victor H. Yoshizumi ;
Danilo H. Spatti ;
Maria E. Dajer .
Journal of Control, Automation and Electrical Systems, 2019, 30 :371-379
[22]   Modeling and optimization for curing of polymer flooding using an artificial neural network and a genetic algorithm [J].
Jiang, Bin ;
Zhang, Fang ;
Sun, Yongli ;
Zhou, Xuesong ;
Dong, Jiaxin ;
Zhang, Luhong .
JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2014, 45 (05) :2217-2224
[23]   Modeling and Optimization of Triticale Wort Production Using an Artificial Neural Network and a Genetic Algorithm [J].
Pribic, Milana ;
Kamenko, Ilija ;
Despotovic, Sasa ;
Mirosavljevic, Milan ;
Pejin, Jelena .
FOODS, 2024, 13 (02)
[24]   OPTIMUM BUSHING LENGTH IN THERMAL DRILLING OF GALVANIZED STEEL USING ARTIFICIAL NEURAL NETWORK COUPLED WITH GENETIC ALGORITHM [J].
Hynes, Navasingh Rajesh Jesudoss ;
Kumar, Ramar ;
Sujana, Jebaraj Angela Jennifa .
MATERIALI IN TEHNOLOGIJE, 2017, 51 (05) :813-822
[25]   OPTIMIZATION OF CNC OPERATING PARAMETERS TO MINIMIZE SURFACE ROUGHNESS OF Pinus sylvestris USING INTEGRATED ARTIFICIAL NEURAL NETWORK AND GENETIC ALGORITHM [J].
Gurgen, Aysenur ;
Cakmak, Ali ;
Yildiz, Sibel ;
Malkocoglu, Abdulkadir .
MADERAS-CIENCIA Y TECNOLOGIA, 2022, 24 :1-12
[26]   Optimization of woven fabric parameters for ultraviolet radiation protection and comfort using artificial neural network and genetic algorithm [J].
Abhijit Majumdar ;
Apurba Das ;
Piyali Hatua ;
Anindya Ghosh .
Neural Computing and Applications, 2016, 27 :2567-2576
[27]   Optimization of woven fabric parameters for ultraviolet radiation protection and comfort using artificial neural network and genetic algorithm [J].
Majumdar, Abhijit ;
Das, Apurba ;
Hatua, Piyali ;
Ghosh, Anindya .
NEURAL COMPUTING & APPLICATIONS, 2016, 27 (08) :2567-2576
[28]   Application of artificial neural network and genetic algorithm to modeling and optimization of removal of methylene blue using activated carbon [J].
Karimi, H. ;
Ghaedi, M. .
JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2014, 20 (04) :2471-2476
[29]   Optimization Ultrasound-Assisted Deep Eutectic Solvent Extraction of Anthocyanins from Raspberry Using Response Surface Methodology Coupled with Genetic Algorithm [J].
Xue, Hongkun ;
Tan, Jiaqi ;
Li, Qian ;
Tang, Jintian ;
Cai, Xu .
FOODS, 2020, 9 (10)
[30]   Optimization of LPDC Process Parameters Using the Combination of Artificial Neural Network and Genetic Algorithm Method [J].
Zhang, Liqiang ;
Li, Luoxing ;
Wang, Shiuping ;
Zhu, Biwu .
JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2012, 21 (04) :492-499