Constant-sign and nodal solutions of coercive (p, q)-Laplacian problems

被引:57
作者
Marano, Salvatore A. [1 ]
Papageorgiou, Nikolaos S. [2 ]
机构
[1] Univ Catania, Dipartimento Matemat & Informat, I-95125 Catania, Italy
[2] Natl Tech Univ Athens, Dept Math, Athens 15780, Greece
关键词
(p; q)-Laplace operator; Constant-sign solutions; Nodal solutions; MULTIPLE SOLUTIONS; P-LAPLACIAN; EXISTENCE;
D O I
10.1016/j.na.2012.09.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The existence of a greatest negative, a smallest positive, and a nodal weak solution to a Dirichlet problem with (p, q)-Laplacian and reaction term that makes coercive the corresponding energy functional is investigated via variational methods besides truncation techniques. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:118 / 129
页数:12
相关论文
共 27 条
[1]  
Aizicovici S., 2008, MEM AM MATH SOC, V196, P915, DOI DOI 10.1090/MEMO/0915
[2]  
[Anonymous], 1968, LINEAR QUASILINEAR E
[3]   Sobolev versus Holder local minimizers and global multiplicity for some quasilinear elliptic equations [J].
Azorero, JPG ;
Alonso, IP ;
Manfredi, JJ .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2000, 2 (03) :385-404
[4]   Soliton like solutions of a Lorentz invariant equation in dimension 3 [J].
Benci, V ;
Fortunato, D ;
Pisani, L .
REVIEWS IN MATHEMATICAL PHYSICS, 1998, 10 (03) :315-344
[5]  
Carl S., 2002, Abstract and Applied Analysis, V7, P613, DOI 10.1155/S1085337502207010
[6]   Constant-sign and sign-changing solutions for nonlinear eigenvalue problems [J].
Carl, Siegfried ;
Motreanu, Dumitru .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (09) :2668-2676
[7]   Sign-Changing Solutions for Nonlinear Elliptic Problems Depending on Parameters [J].
Carl, Siegfried ;
Motreanu, Dumitru .
INTERNATIONAL JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 2010
[8]   On the stationary solutions of generalized reaction diffusion equations with p&q-Laplacian [J].
Cherfils, L ;
Il'Yasov, Y .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2005, 4 (01) :9-22
[9]   The beginning of the Fucik spectrum for the p-Laplacian [J].
Cuesta, M ;
de Figueiredo, D ;
Gossez, JP .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 159 (01) :212-238
[10]  
DIAZ JI, 1987, CR ACAD SCI I-MATH, V305, P521