Nano-cross-junction effect on phonon transport in silicon nanowire cages

被引:118
作者
Ma, Dengke [1 ,2 ]
Ding, Hongru [1 ,2 ]
Meng, Han [1 ,2 ]
Feng, Lei [3 ]
Wu, Yue [4 ]
Shiomi, Junichiro [3 ,5 ]
Yang, Nuo [1 ,2 ]
机构
[1] HUST, State Key Lab Coal Combust, Wuhan 430074, Peoples R China
[2] HUST, NICE, Sch Energy & Power Engn, Wuhan 430074, Peoples R China
[3] Univ Tokyo, Dept Mech Engn, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1138656, Japan
[4] Shanghai Inst Technol, Sch Chem & Environm Engn, Shanghai 200235, Peoples R China
[5] Natl Inst Mat Sci, Ctr Mat Res Informat Integrat, 1-2-1 Sengen, Tsukuba, Ibaraki 3050047, Japan
基金
中国国家自然科学基金;
关键词
THERMAL-CONDUCTIVITY; SIMULATION; FABRICATION; REDUCTION; NANOTUBES; NETWORKS; DYNAMICS;
D O I
10.1103/PhysRevB.94.165434
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Wave effects of phonons can give rise to controllability of heat conduction in nanostructures beyond that by particle scattering at surfaces and interfaces. In this paper, we propose a new class of three-dimensional nanostructures: a silicon-nanowire-cage (SiNWC) structure consisting of silicon nanowires (SiNWs) connected by nano-cross-junctions. We perform equilibrium molecular dynamics simulations and find an ultralow value of thermal conductivity of SiNWC, 0.173Wm(-1) K-1, which is one order lower than that of SiNWs. By further modal analysis and atomistic Green's function calculations, we identify that the large reduction is due to significant phonon localization induced by the phonon local resonance and hybridization at the junction part in a wide range of phonon modes. This localization effect does not require the cage to be periodic, unlike the phononic crystals, and can be realized in structures that are easier to synthesize, for instance in a form of randomly oriented SiNW network.
引用
收藏
页数:10
相关论文
共 37 条
[1]   Vibrations and thermal transport in nanocrystalline silicon [J].
Bodapati, Arun ;
Schelling, Patrick K. ;
Phillpot, Simon R. ;
Keblinski, Pawel .
PHYSICAL REVIEW B, 2006, 74 (24)
[2]   Rationally Designed Single-Crystalline Nanowire Networks [J].
Car, Diana ;
Wang, Jia ;
Verheijen, Marcel A. ;
Bakkers, Erik P. A. M. ;
Plissard, Sebastien R. .
ADVANCED MATERIALS, 2014, 26 (28) :4875-+
[3]   Remarkable Reduction of Thermal Conductivity in Silicon Nanotubes [J].
Chen, Jie ;
Zhang, Gang ;
Li, Baowen .
NANO LETTERS, 2010, 10 (10) :3978-3983
[4]   Nanophononic Metamaterial: Thermal Conductivity Reduction by Local Resonance [J].
Davis, Bruce L. ;
Hussein, Mahmoud I. .
PHYSICAL REVIEW LETTERS, 2014, 112 (05)
[5]   GULP: A computer program for the symmetry-adapted simulation of solids [J].
Gale, JD .
JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS, 1997, 93 (04) :629-637
[6]   Rapid Fabrication Technique for Interpenetrated ZnO Nanotetrapod Networks for Fast UV Sensors [J].
Gedamu, Dawit ;
Paulowicz, Ingo ;
Kaps, Soeren ;
Lupan, Oleg ;
Wille, Sebastian ;
Haidarschin, Galina ;
Mishra, Yogendra Kumar ;
Adelung, Rainer .
ADVANCED MATERIALS, 2014, 26 (10) :1541-1550
[7]   Phonon interference and thermal conductance reduction in atomic-scale metamaterials [J].
Han, Haoxue ;
Potyomina, Lyudmila G. ;
Darinskii, Alexandre A. ;
Volz, Sebastian ;
Kosevich, Yuriy A. .
PHYSICAL REVIEW B, 2014, 89 (18)
[8]   Spectral phonon transport properties of silicon based on molecular dynamics Simulations and lattice dynamics [J].
Henry, Asegun S. ;
Chen, Gang .
JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2008, 5 (02) :141-152
[9]   Fabrication of Microdevices with Integrated Nanowires for Investigating Low-Dimensional Phonon Transport [J].
Hippalgaonkar, Kedar ;
Huang, Baoling ;
Chen, Renkun ;
Sawyer, Karma ;
Ercius, Peter ;
Majumdar, Arun .
NANO LETTERS, 2010, 10 (11) :4341-4348
[10]   Enhanced thermoelectric performance of rough silicon nanowires [J].
Hochbaum, Allon I. ;
Chen, Renkun ;
Delgado, Raul Diaz ;
Liang, Wenjie ;
Garnett, Erik C. ;
Najarian, Mark ;
Majumdar, Arun ;
Yang, Peidong .
NATURE, 2008, 451 (7175) :163-U5