THE SOLUTION OF THE KATO PROBLEM FOR DEGENERATE ELLIPTIC OPERATORS WITH GAUSSIAN BOUNDS

被引:0
|
作者
Cruz-Uribe, David [1 ]
Rios, Cristian [2 ]
机构
[1] Trinity Coll, Dept Math, Hartford, CT 06106 USA
[2] Univ Calgary, Dept Math & Stat, Calgary, AB T2N 1N4, Canada
关键词
REGULARITY;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the Kato conjecture for degenerate elliptic operators on R-n. More precisely, we consider the divergence form operator L-w = -w(-1) divA del, where w is a Muckenhoupt A(2) weight and A is a complex-valued n x n matrix such that w(-1)A is bounded and uniformly elliptic. We show that if the heat kernel of the associated semigroup e(-tLw) satisfies Gaussian bounds, then the weighted Kato square root estimate, parallel to L(w)(1/2)f parallel to(L2(w)) approximate to parallel to del f parallel to(L2(w)), holds.
引用
收藏
页码:3449 / 3478
页数:30
相关论文
共 50 条
  • [1] The solution of the Kato problem for divergence form elliptic operators with Gaussian heat kernel bounds
    Hofmann, S
    Lacey, M
    McIntosh, A
    ANNALS OF MATHEMATICS, 2002, 156 (02) : 623 - 631
  • [2] ON THE KATO PROBLEM AND EXTENSIONS FOR DEGENERATE ELLIPTIC OPERATORS
    Cruz-Uribe, David
    Maria Martell, Jose
    Rios, Cristian
    ANALYSIS & PDE, 2018, 11 (03): : 609 - 660
  • [3] Kato square root problem for degenerate elliptic operators on bounded Lipschitz domains
    Zhang, Junqiang
    Yang, Dachun
    Yang, Sibei
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 353 : 1 - 62
  • [4] Gaussian bounds for higher-order elliptic differential operators with Kato type potentials
    Deng, Qingquan
    Ding, Yong
    Yao, Xiaohua
    JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (08) : 5377 - 5397
  • [5] Kato's Inequalities for Degenerate Quasilinear Elliptic Operators
    Horiuchi, Toshio
    KYUNGPOOK MATHEMATICAL JOURNAL, 2008, 48 (01): : 15 - 24
  • [6] INEQUALITY OF TOSIO KATO FOR DEGENERATE-ELLIPTIC OPERATORS
    DEVINATZ, A
    JOURNAL OF FUNCTIONAL ANALYSIS, 1979, 32 (03) : 312 - 335
  • [7] The solution of the Kato square root problem for second order elliptic operators on Rn
    Auscher, P
    Hofmann, S
    Lacey, M
    McIntosh, A
    Tchamitchian, P
    ANNALS OF MATHEMATICS, 2002, 156 (02) : 633 - 654
  • [8] Partial Gaussian Bounds for Degenerate Differential Operators
    A. F. M. ter Elst
    E. M. Ouhabaz
    Potential Analysis, 2011, 35 : 175 - 199
  • [9] Partial Gaussian Bounds for Degenerate Differential Operators
    ter Elst, A. F. M.
    Ouhabaz, E. M.
    POTENTIAL ANALYSIS, 2011, 35 (02) : 175 - 199
  • [10] PARABOLIC PROBLEM FOR DEGENERATE ELLIPTIC OPERATORS
    SABLETOUGERON, M
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1978, 287 (09): : 703 - 706