An efficiency upper bound for inverse covariance estimation

被引:2
|
作者
Eldan, Ronen [1 ]
机构
[1] Tel Aviv Univ, Sch Math Sci, IL-69978 Tel Aviv, Israel
基金
以色列科学基金会;
关键词
Covariance Matrix; Compress Sensing; Total Variation Distance; Gaussian Random Vector; Wishart Matrix;
D O I
10.1007/s11856-015-1169-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We derive a quantitative upper bound for the efficiency of estimating entries in the inverse covariance matrix of a high dimensional distribution. We show that in order to approximate an off-diagonal entry of the density matrix of a d-dimensional Gaussian random vector, one needs at least a number of samples proportional to d. Furthermore, we show that with n a parts per thousand(a) d samples, the hypothesis that two given coordinates are fully correlated, when all other coordinates are conditioned to be zero, cannot be told apart from the hypothesis that the two are uncorrelated.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 50 条
  • [1] An efficiency upper bound for inverse covariance estimation
    Ronen Eldan
    Israel Journal of Mathematics, 2015, 207 : 1 - 9
  • [2] AN INTERVAL KALMAN FILTER ENHANCED BY LOWERING THE COVARIANCE MATRIX UPPER BOUND
    Tuan Anh Tran
    Jauberthie, Carine
    Trave-Massuyes, Louise
    Quoc Hung Lu
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2021, 31 (02) : 259 - 269
  • [3] Optimal uncertainty size in distributionally robust inverse covariance estimation
    Blanchet, Jose
    Si, Nian
    OPERATIONS RESEARCH LETTERS, 2019, 47 (06) : 618 - 621
  • [4] LARGE-SCALE SPARSE INVERSE COVARIANCE MATRIX ESTIMATION
    Bollhoefer, Matthias
    Eftekhari, Aryan
    Scheidegger, Simon
    Schenk, Olaf
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (01) : A380 - A401
  • [5] Computing the Moore-Penrose inverse for the covariance matrix in constrained nonlinear estimation
    Hartmann, WM
    Hartwig, RE
    SIAM JOURNAL ON OPTIMIZATION, 1996, 6 (03) : 727 - 747
  • [6] An estimator of the inverse covariance matrix and its application to ML parameter estimation in dynamical systems
    David, B
    Bastin, G
    AUTOMATICA, 2001, 37 (01) : 99 - 106
  • [7] Eigen structure of a new class of covariance and inverse covariance matrices
    Battey, Heather
    BERNOULLI, 2017, 23 (4B) : 3166 - 3177
  • [8] Cramer-Rao bound and maximum likelihood estimation of covariance matrices with non-homogeneous snapshots
    Besson, Olivier
    Bidon, Stephanie
    Yourneret, Jean-Yves
    CONFERENCE RECORD OF THE FORTY-FIRST ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, VOLS 1-5, 2007, : 2213 - +
  • [9] Efficient Inverse Covariance Matrix Estimation for Low-Complexity Closed-Loop DPD Systems
    Campo, Pablo Pascual
    Anttila, Lauri
    Lampu, Vesa
    Guo, Yan
    Wang, Neng
    Valkama, Mikko
    2021 IEEE MTT-S INTERNATIONAL WIRELESS SYMPOSIUM (IWS 2021), 2021,
  • [10] Efficient Inverse Covariance Matrix Estimation for Low-Complexity Closed-Loop DPD Systems
    Campo, Pablo Pascual
    Anttila, Lauri
    Lampu, Vesa
    Guo, Yan
    Wang, Neng
    Valkama, Mikko
    2021 IEEE MTT-S INTERNATIONAL WIRELESS SYMPOSIUM (IWS 2021), 2021,