The effect of intrinsic characteristics on mechanical properties of poly(l-lactic acid) bioresorbable vascular stents

被引:15
作者
Hua, Rixin [1 ]
Tian, Yuan [1 ]
Cheng, Jie [1 ]
Wu, Gensheng [2 ]
Jiang, Wei [3 ]
Ni, Zhonghua [1 ]
Zhao, Gutian [1 ]
机构
[1] Southeast Univ, Sch Mech Engn, Jiangsu Key Lab Design & Manufacture Micronano Bi, Nanjing 211189, Jiangsu, Peoples R China
[2] Nanjing Forestry Univ, Sch Mech & Elect Engn, Nanjing 210037, Peoples R China
[3] Nanjing Univ, Sch Environm, State Key Lab Pollut Control & Resources Reuse, Nanjing 210023, Peoples R China
基金
中国国家自然科学基金;
关键词
KEYWORDS; Poly(L-lactic acid); Bioresorbable vascular stents; Mechanical properties; Intrinsic characteristics; CORONARY; ANGIOPLASTY; PROGRESS;
D O I
10.1016/j.medengphy.2020.04.006
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Poly(L-lactic acid) (PLLA) is currently the bioresorbable polymer of choice for vascular stents with its superior biocompatibility and mechanical properties. However, it is still difficult to enhance the radial supporting capacity of PLLA stents without increasing the strut thickness. In this study, the performance of laser-cut thin-strut stents from two groups of PLLA tubes are investigated. We considered two groups of PLLA tubes. Group 1 indicates the longitudinally stretched from original 150-mu m-thick tubes, and Group 2 indicates the directly thinned from original 150-mu m-thick tubes. Three stages of mechanical tests were conducted in this study, which are defined as tensile tests of dog-bone specimens, radial loading tests of tubes and radial loading tests of stents. The results suggest that Group 2 has higher radial supporting capacity than Group 1 with the same wall thickness. This work serves as a basis for manufacturing thin-strut stents with sufficient radial supporting capacity. (c) 2020IPEM. PublishedbyElsevierLtd. Allrightsreserved.
引用
收藏
页码:118 / 124
页数:7
相关论文
共 25 条
[21]   Bioresorbable Scaffold The Emerging Reality and Future Directions [J].
Sotomi, Yohei ;
Onuma, Yoshinobu ;
Collet, Carlos ;
Tenekecioglu, Erhan ;
Virmani, Renu ;
Kleiman, Neal S. ;
Serruys, Patrick W. .
CIRCULATION RESEARCH, 2017, 120 (08) :1341-1352
[22]   Outcomes associated with drug-eluting and bare-metal stents:: a collaborative network meta-analysis [J].
Stettler, Christoph ;
Wandel, Simon ;
Allemann, Sabin ;
Kastrati, Adnan ;
Morice, Marie Claude ;
Schoemig, Albert ;
Pfisterer, Matthias E. ;
Stone, Gregg W. ;
Leon, Martin B. ;
Suarez de Lezo, Jose ;
Goy, Jean Jacques ;
Park, Seung-Jung ;
Sabate, Manel ;
Suttorp, Maarten J. ;
Kelbaek, Henning ;
Spaulding, Christian ;
Menichelli, Maurizio ;
Vermeersch, Paul ;
Dirksen, Maurits T. ;
Cervinka, Pavel ;
Petronio, Anna Sonia ;
Nordmann, Alain J. ;
Diem, Peter ;
Meier, Bernhard ;
Zwahlen, Marcel ;
Reichenbach, Stephan ;
Trelle, Sven ;
Windecker, Stephan ;
Jueni, Peter .
LANCET, 2007, 370 (9591) :937-948
[23]   3D-Printing Strong High-Resolution Antioxidant Bioresorbable Vascular Stents [J].
van Lith, Robert ;
Baker, Evan ;
Ware, Henry ;
Yang, Jian ;
Farsheed, Adam Cyrus ;
Sun, Cheng ;
Ameer, Guillermo .
ADVANCED MATERIALS TECHNOLOGIES, 2016, 1 (09)
[24]   Effect of working environment and procedural strategies on mechanical performance of bioresorbable vascular scaffolds [J].
Wang, Pei-Jiang ;
Nezami, Farhad Rikhtegar ;
Gorji, Maysam B. ;
Berti, Francesca ;
Petrini, Lorenza ;
Wierzbicki, Tomasz ;
Migliavacca, Francesco ;
Edelman, Elazer R. .
ACTA BIOMATERIALIA, 2018, 82 :34-43
[25]   Computational and experimental investigation into mechanical performances of Poly-L-Lactide Acid (PLLA) coronary stents [J].
Wang, Qian ;
Fang, Gang ;
Zhao, Yinghong ;
Wang, Guohui ;
Cai, Tao .
JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2017, 65 :415-427