Assessment of land use and land cover changes and valuation of carbon stocks in the Sergipe semiarid region, Brazil: 1992-2030

被引:51
作者
Fernandes, Milton Marques [1 ]
de Moura Fernandes, Marcia Rodrigues [2 ]
Garcia, Junior Ruiz [3 ]
Trondoli Matricardi, Eraldo Aparecido [4 ]
de Almeida, Andre Quintao [5 ]
Pinto, Alexandre Siqueira [6 ]
Cezar Menezes, Romulo Simoes [7 ]
Silva, Ademilson de Jesus [8 ]
de Souza Lima, Alexandre Herculano [8 ]
机构
[1] Univ Fed Sergipe, Dept Forest Sci, Av Marechal Rondon S-N, BR-49100000 Sao Cristovao, SE, Brazil
[2] State Secretariat Urban Dev & Sustainabil, Rua Vila Cristina 1051, BR-49020150 Aracaju, SE, Brazil
[3] Univ Fed Parana, Dept Econ, Av Prefeito Lothario Meissner 632, BR-80210170 Curitiba, Parana, Brazil
[4] Univ Brasilia, Dept Forestry, Univ Campus Darcy Ribeiro, BR-70910900 Brasilia, DF, Brazil
[5] Univ Fed Sergipe, Dept Agr Engn, Av Marechal Rondon S-N, BR-49100000 Sao Cristovao, SE, Brazil
[6] Univ Fed Sergipe, Dept Ecol, Av Marechal Rondon S-N, BR-49100000 Sao Cristovao, SE, Brazil
[7] Univ Fed Pernambuco, Dept Nucl Energy, Av Prof Luis Freire 1000, BR-50740540 Recife, PE, Brazil
[8] Univ Fed Sergipe, PostGrad Programme Dev & Environm, Av Marechal Rondon S-N, BR-49100000 Sao Cristovao, SE, Brazil
关键词
Brazilian semiarid region; Deforestation; Climatic changes; Carbon sequestration; InVEST model; CAATINGA DRY FOREST; IMAGE CLASSIFICATION; SEQUESTRATION; VEGETATION; IMPACTS; SIMULATION; SCENARIOS; AGREEMENT; DYNAMICS; DELTA;
D O I
10.1016/j.landusepol.2020.104795
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The semiarid region in the state of Sergipe, Brazil, approximately 11,000 km(2), has experienced high deforestation rates in the last decades, which ultimately contribute to global climatic changes. The valuation of ecosystem services of CO2 sequestration can support definition of environmental policies to decrease deforestation in that region. This study aimed to assess land use and land cover changes in the Sergipe semiarid region between 1992 and 2017 by applying remotely sensed data and technics; simulate the land use and land cover changes between 2017 and 2030 by applying a cellular automaton model, by assuming current land use trends (Business as Usual - BAU) as a reference scenario, and a more conservative scenario (Protected Forest - PF), in which was assumed an effective enforcement of the Brazilian Forest Code established in 2012; simulate the carbon stocks by 2017 assuming the BAU and PF scenarios by 2030, and estimate the Carbon balance between the 2030 and 2017 scenarios; and estimate the economic valuation of carbon emission and sequestration by using the InVEST software. The results showed that agriculture (cropped lands) was main driver of the landscape changes in the study area, which increased 14% by 2017, a net increase of 1494.45 km(2). The results showed that the total Carbon emissions would reach 736,900 Mg CO2-eq by assuming the BAU scenario, which would increase the cost of opportunity up to US$ 17.7 million and a social carbon cost varying between US$ 10.3 and US$ 30.2 million. The restoration of the permanent preservation areas could contribute to increase Carbon sequestration up to 481,900 Mg CO2-eq by 2030, which is equivalent cost of US$ 11.6 million. The natural landscape in the Sergipe semiarid region was strongly affected by deforestation activities occurred between 1992 and 2017. It requires, therefore, effective actions to support and promote restoration of degraded areas. The forested areas within the Sergipe semiarid region were the most affected type of vegetation because of expansion of agricultural fields soil exposures (Exposed Land). Environmental assessments based on scenarios and economic valuations can provide crucial information to support policy and decision makers to improve strategies for environmental management and conservation.
引用
收藏
页数:13
相关论文
共 77 条
[31]   Spatial Simulation Modelling of Future Forest Cover Change Scenarios in Luangprabang Province, Lao PDR [J].
Kamusoko, Courage ;
Oono, Katsumata ;
Nakazawa, Akihiro ;
Wada, Yukio ;
Nakada, Ryuji ;
Hosokawa, Takahiro ;
Tomimura, Shunsuke ;
Furuya, Toru ;
Iwata, Akitaka ;
Moriike, Hiromichi ;
Someya, Takashi ;
Yamase, Takashi ;
Nasu, Mitsuru ;
Gomi, Yoshitaka ;
Sano, Takio ;
Isobe, Takao ;
Homsysavath, Khamma .
FORESTS, 2011, 2 (03) :707-729
[32]   Dynamics of global forest area: Results from the FAO Global Forest Resources Assessment 2015 [J].
Keenan, Rodney J. ;
Reams, Gregory A. ;
Achard, Frederic ;
de Freitas, Joberto V. ;
Grainger, Alan ;
Lindquist, Erik .
FOREST ECOLOGY AND MANAGEMENT, 2015, 352 :9-20
[33]   A spatiotemporal analysis of landscape change using an integrated Markov chain and cellular automata models [J].
Keshtkar H. ;
Voigt W. .
Modeling Earth Systems and Environment, 2016, 2 (1)
[34]  
Kleinbaum D.G., 2002, Logistic regression
[35]   MEASUREMENT OF OBSERVER AGREEMENT FOR CATEGORICAL DATA [J].
LANDIS, JR ;
KOCH, GG .
BIOMETRICS, 1977, 33 (01) :159-174
[36]   Global Carbon Budget 2015 [J].
Le Quere, C. ;
Moriarty, R. ;
Andrew, R. M. ;
Canadell, J. G. ;
Sitch, S. ;
Korsbakken, J. I. ;
Friedlingstein, P. ;
Peters, G. P. ;
Andres, R. J. ;
Boden, T. A. ;
Houghton, R. A. ;
House, J. I. ;
Keeling, R. F. ;
Tans, P. ;
Arneth, A. ;
Bakker, D. C. E. ;
Barbero, L. ;
Bopp, L. ;
Chang, J. ;
Chevallier, F. ;
Chini, L. P. ;
Ciais, P. ;
Fader, M. ;
Feely, R. A. ;
Gkritzalis, T. ;
Harris, I. ;
Hauck, J. ;
Ilyina, T. ;
Jain, A. K. ;
Kato, E. ;
Kitidis, V. ;
Goldewijk, K. Klein ;
Koven, C. ;
Landschuetzer, P. ;
Lauvset, S. K. ;
Lefevre, N. ;
Lenton, A. ;
Lima, I. D. ;
Metzl, N. ;
Millero, F. ;
Munro, D. R. ;
Murata, A. ;
Nabel, J. E. M. S. ;
Nakaoka, S. ;
Nojiri, Y. ;
O'Brien, K. ;
Olsen, A. ;
Ono, T. ;
Perez, F. F. ;
Pfeil, B. .
EARTH SYSTEM SCIENCE DATA, 2015, 7 (02) :349-396
[37]  
Lillesand MT., 2015, Remote sensing and image interpretation
[38]   A survey of image classification methods and techniques for improving classification performance [J].
Lu, D. ;
Weng, Q. .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2007, 28 (05) :823-870
[39]  
Magesh N. S., 2017, Remote Sensing Applications: Society and Environment, V8, P12, DOI 10.1016/j.rsase.2017.07.003
[40]  
Mapbiomas, 2019, MUD COB US MAPB V 3