Exergy-based analyses are useful means for the evaluation and improvement of energy conversion systems. A life cycle assessment (LCA) is coupled with an exergetic analysis in an exergoenvironmental analysis. An advanced exergoenvironmental analysis quantifies the environmental impacts estimated in the LCA into avoidable/unavoidable parts and into endogenous/exogenous parts, depending on their source. This analysis reveals the potential for improvement of plant components/processes and the component interactions within a system. In this paper, the environmental performance of an advanced zero emission plant (AZEP) with CO2 capture is evaluated based on an advanced exergoenvironmental analysis. The plant uses oxy-fuel technology and incorporates an oxygen-separating mixed conducting membrane (MCM). To evaluate the operation of the system, a similar plant (reference plant) without CO, capture is used. It has been found that the improvement potential of the AZEP concept is restricted by the relatively low avoidable environmental impact of exergy destruction of several plant components. Moreover, the endogenous environmental impacts are for the majority of the components significant, while the exogenous values are, generally, kept at low levels. Nevertheless, a closer inspection reveals that there are strong interactions among the components of the MCM reactor and the components constituting the CO2 compression unit. Such results are valuable, when the improvement of the environmental performance of the plant is targeted and they can only be obtained through advanced exergy-based methods.