Diffractive orbits in isospectral billiards

被引:6
作者
Giraud, O [1 ]
机构
[1] HH Wills Phys Lab, Bristol BS8 1TL, Avon, England
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2004年 / 37卷 / 07期
关键词
D O I
10.1088/0305-4470/37/7/016
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Isospectral domains are non-isometric regions of space for which the spectra of the Laplace-Beltrami operator coincide. In the two-dimensional Euclidean space, instances of such domains have been given. It has been proved for these examples that the length spectrum, that is the set of the lengths of all periodic trajectories, coincides as well. However there is no one-to-one correspondence between the diffractive trajectories. It will be shown here how the diffractive contributions to the Green functions match nevertheless in a 'one-to-three' correspondence.
引用
收藏
页码:2751 / 2764
页数:14
相关论文
共 20 条
[1]  
[Anonymous], INTERNAT MATH RES NO
[2]  
BERARD P, 1989, ASTERISQUE, P127
[3]   CONSTRUCTING ISOSPECTRAL MANIFOLDS [J].
BROOKS, R .
AMERICAN MATHEMATICAL MONTHLY, 1988, 95 (09) :823-839
[4]   DRUMS THAT SOUND THE SAME [J].
CHAPMAN, SJ .
AMERICAN MATHEMATICAL MONTHLY, 1995, 102 (02) :124-138
[5]  
ESKIN A, 2001, MATHDS0107204
[6]   ISOSPECTRAL PLANE DOMAINS AND SURFACES VIA RIEMANNIAN ORBIFOLDS [J].
GORDON, C ;
WEBB, D ;
WOLPERT, S .
INVENTIONES MATHEMATICAE, 1992, 110 (01) :1-22
[7]  
GORDON C, 1986, CONT MATH, V51, P63, DOI DOI 10.1090/C0NM/051/848934.MR848934
[8]  
Gutkin E, 2000, DUKE MATH J, V103, P191
[9]   Exact scattering theory for any straight reflectors in two dimensions [J].
Hannay, JH ;
Thain, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (14) :4063-4080
[10]   CAN ONE HEAR SHAPE OF A DRUM [J].
KAC, M .
AMERICAN MATHEMATICAL MONTHLY, 1966, 73 (4P2) :1-&