A Power-Efficient Analog Integrated Circuit for Amplification and Detection of Neural Signals

被引:8
|
作者
Borghi, T. [1 ]
Bonfanti, A. [1 ]
Gumeroli, R. [1 ]
Zambra, G. [1 ]
Spinelli, A. S. [1 ]
机构
[1] Politecn Milan IU NET, Dip Elettron & Informaz, I-20133 Milan, Italy
来源
2008 30TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-8 | 2008年
关键词
D O I
10.1109/IEMBS.2008.4650315
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
We present a neural amplifier that optimizes the trade-off between power consumption and noise performance down to the best so far reported. In the perspective of realizing a fully autonomous implantable system we also address the problem of spike detection by using a new simple algorithm and we discuss the implementation with analog integrated circuits. Implemented in 0.35-mu m CMOS technology and with total current consumption of about 20 mu A, the whole circuit occupies an area of 0.18 mm(2). Reduced power consumption and small area make it suited to be used in chronic multichannel recording systems for neural prosthetics and neuroscience experiments.
引用
收藏
页码:4911 / 4915
页数:5
相关论文
共 50 条
  • [31] Movement Detection for Power-Efficient Smartphone WLAN Localization
    Shafer, Ilari
    Chang, Mark L.
    MSWIM 2010: PROCEEDINGS OF THE 13TH ACM INTERNATIONAL CONFERENCE ON MODELING, ANALYSIS, AND SIMULATION OF WIRELESS AND MOBILE SYSTEMS, 2010, : 81 - 90
  • [32] Fault Detection of Linear Analog Integrated Circuit in Network
    Li, Deliang
    Huang, Kaoli
    Wang, Changlong
    JOURNAL OF ELECTRONIC TESTING-THEORY AND APPLICATIONS, 2014, 30 (04): : 483 - 489
  • [33] Circuit Design Considerations for Power-Efficient and Safe Implantable Electrical Neurostimulators
    Guan, Rui
    Zufiria, Pedro G.
    Giagka, Vasiliki
    Serdijn, Wouter A.
    2020 IEEE 11TH LATIN AMERICAN SYMPOSIUM ON CIRCUITS & SYSTEMS (LASCAS), 2020,
  • [34] A Power-Efficient Successive Approximation Algorithm for Low-Activity Signals
    Nasiri, Hamed
    Li, Cheng
    Zhang, Lihong
    2023 18TH CONFERENCE ON PH.D RESEARCH IN MICROELECTRONICS AND ELECTRONICS, PRIME, 2023, : 265 - 268
  • [35] Design of Power-Efficient Training Accelerator for Convolution Neural Networks
    Hong, JiUn
    Arslan, Saad
    Lee, TaeGeon
    Kim, HyungWon
    ELECTRONICS, 2021, 10 (07)
  • [36] Power-Efficient Implementation of Ternary Neural Networks in Edge Devices
    Molina, Miguel
    Mendez, Javier
    Morales, Diego P.
    Castillo, Encarnacion
    Lopez Vallejo, Marisa
    Pegalajar, Manuel
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (20): : 20111 - 20121
  • [37] Optoelectronic Implementation of Compact and Power-efficient Recurrent Neural Networks
    Ichikawa, Taisei
    Masuda, Yutaka
    Ishihara, Tohru
    Shinya, Akihiko
    Notomi, Masaya
    2022 IEEE COMPUTER SOCIETY ANNUAL SYMPOSIUM ON VLSI (ISVLSI 2022), 2022, : 390 - 393
  • [38] Power-Efficient Deep Neural Networks with Noisy Memristor Implementation
    Dupraz, Elsa
    Varshney, Lav R.
    Leduc-Primeau, Francois
    2021 IEEE INFORMATION THEORY WORKSHOP (ITW), 2021,
  • [39] Power-Efficient Analog Front-End Interference Suppression With Binary Antennas
    Nassirpour, Sajjad
    Gupta, Agrim
    Vahid, Alireza
    Bharadia, Dinesh
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2023, 22 (04) : 2592 - 2605
  • [40] Innovative Analog Processing-Based Approach for Power-Efficient Wireless Transceivers
    Safari, Mir Mahdi
    Pourrostam, Jafar
    Tazehkand, Behzad Mozaffari
    IEEE ACCESS, 2024, 12 : 130273 - 130291