Kahler currents and null loci

被引:49
作者
Collins, Tristan C. [1 ]
Tosatti, Valentino [2 ]
机构
[1] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
[2] Northwestern Univ, Dept Math, Evanston, IL 60201 USA
基金
美国国家科学基金会;
关键词
FINITE-TIME SINGULARITY; EINSTEIN METRICS; PROJECTIVE-MANIFOLDS; RICCI FLOW; BASE LOCI; ASYMPTOTICS; VARIETIES; EXTENSION; CURVATURE; STABILITY;
D O I
10.1007/s00222-015-0585-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the non-Kahler locus of a nef and big class on a compact complex manifold bimeromorphic to a Kahler manifold equals its null locus. In particular this gives an analytic proof of a theorem of Nakamaye and Ein-Lazarsfeld-Musta-Nakamaye-Popa. As an application, we show that finite time non-collapsing singularities of the Kahler-Ricci flow on compact Kahler manifolds always form along analytic subvarieties, thus answering a question of Feldman-Ilmanen-Knopf and Campana. We also extend the second author's results about noncollapsing degenerations of Ricci-flat Kahler metrics on Calabi-Yau manifolds to the nonalgebraic case.
引用
收藏
页码:1167 / 1198
页数:32
相关论文
共 66 条
[51]   CONTRACTING EXCEPTIONAL DIVISORS BY THE KAHLER-RICCI FLOW [J].
Song, Jian ;
Weinkove, Ben .
DUKE MATHEMATICAL JOURNAL, 2013, 162 (02) :367-415
[52]   The Kahler-Ricci Flow on Projective Bundles [J].
Song, Jian ;
Szekelyhidi, Gabor ;
Weinkove, Ben .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2013, 2013 (02) :243-257
[53]   On the Kahler-Ricci flow on projective manifolds of general type [J].
Tian, G ;
Zhang, Z .
CHINESE ANNALS OF MATHEMATICS SERIES B, 2006, 27 (02) :179-192
[54]   FINITE-TIME SINGULARITY OF KAHLER-RICCI FLOW [J].
Tian, Gang .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2010, 28 (03) :1137-1150
[55]  
Tian G, 2008, ASTERISQUE, P71
[56]   Calabi-Yau manifolds and their degenerations [J].
Tosatti, Valentino .
BLAVATNIK AWARDS FOR YOUNG SCIENTISTS 2011, 2012, 1260 :8-13
[57]   DEGENERATIONS OF CALABI-YAU METRICS [J].
Tosatti, Valentino .
GEOMETRY AND PHYSICS IN CRACOW, 2011, 4 (03) :495-505
[58]   Limits of Calabi-Yau metrics when the Kahler class degenerates [J].
Tosatti, Valentino .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2009, 11 (04) :755-776
[59]   KAHLER SPACES AND PROPER OPEN MORPHISMS [J].
VAROUCHAS, J .
MATHEMATISCHE ANNALEN, 1989, 283 (01) :13-52
[60]  
Voisin Claire, 2007, HODGE THEORY COMPLEX, V76