Kahler currents and null loci

被引:49
作者
Collins, Tristan C. [1 ]
Tosatti, Valentino [2 ]
机构
[1] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
[2] Northwestern Univ, Dept Math, Evanston, IL 60201 USA
基金
美国国家科学基金会;
关键词
FINITE-TIME SINGULARITY; EINSTEIN METRICS; PROJECTIVE-MANIFOLDS; RICCI FLOW; BASE LOCI; ASYMPTOTICS; VARIETIES; EXTENSION; CURVATURE; STABILITY;
D O I
10.1007/s00222-015-0585-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the non-Kahler locus of a nef and big class on a compact complex manifold bimeromorphic to a Kahler manifold equals its null locus. In particular this gives an analytic proof of a theorem of Nakamaye and Ein-Lazarsfeld-Musta-Nakamaye-Popa. As an application, we show that finite time non-collapsing singularities of the Kahler-Ricci flow on compact Kahler manifolds always form along analytic subvarieties, thus answering a question of Feldman-Ilmanen-Knopf and Campana. We also extend the second author's results about noncollapsing degenerations of Ricci-flat Kahler metrics on Calabi-Yau manifolds to the nonalgebraic case.
引用
收藏
页码:1167 / 1198
页数:32
相关论文
共 66 条
[21]  
Cantat S, 2012, ANN SCI ECOLE NORM S, V45, P447
[23]  
Collins T., 2014, Ann. Fac. Sci. Toulouse Math., V23, P893
[24]   A MULTI-DIMENSIONAL RESOLUTION OF SINGULARITIES WITH APPLICATIONS TO ANALYSIS [J].
Collins, Tristan C. ;
Greenleaf, Allan ;
Pramanik, Malabika .
AMERICAN JOURNAL OF MATHEMATICS, 2013, 135 (05) :1179-1252
[25]   TRACES OF RUNGE DOMAINS ON ANALYTIC SUBSETS [J].
COLTOIU, M .
MATHEMATISCHE ANNALEN, 1991, 290 (03) :545-548
[26]   Extension of plurisubharmonic functions with growth control [J].
Coman, Dan ;
Guedj, Vincent ;
Zeriahi, Ahmed .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2013, 676 :33-49
[27]  
Demailly J.P., Complex analytic and differential geometry
[28]   Holder continuous solutions to Monge-Ampere equations [J].
Demailly, Jean-Pierre ;
Dinew, Slawomir ;
Guedj, Vincent ;
Pham Hoang Hiep ;
Kolodziej, Slawomir ;
Zeriahi, Ahmed .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2014, 16 (04) :619-647
[29]  
DEMAILLY JP, 1992, LECT NOTES MATH, V1507, P87
[30]   Numerical characterization of the Kahler cone of a compact Kahler manifold [J].
Demailly, JP ;
Paun, M .
ANNALS OF MATHEMATICS, 2004, 159 (03) :1247-1274