Kahler currents and null loci

被引:49
作者
Collins, Tristan C. [1 ]
Tosatti, Valentino [2 ]
机构
[1] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
[2] Northwestern Univ, Dept Math, Evanston, IL 60201 USA
基金
美国国家科学基金会;
关键词
FINITE-TIME SINGULARITY; EINSTEIN METRICS; PROJECTIVE-MANIFOLDS; RICCI FLOW; BASE LOCI; ASYMPTOTICS; VARIETIES; EXTENSION; CURVATURE; STABILITY;
D O I
10.1007/s00222-015-0585-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the non-Kahler locus of a nef and big class on a compact complex manifold bimeromorphic to a Kahler manifold equals its null locus. In particular this gives an analytic proof of a theorem of Nakamaye and Ein-Lazarsfeld-Musta-Nakamaye-Popa. As an application, we show that finite time non-collapsing singularities of the Kahler-Ricci flow on compact Kahler manifolds always form along analytic subvarieties, thus answering a question of Feldman-Ilmanen-Knopf and Campana. We also extend the second author's results about noncollapsing degenerations of Ricci-flat Kahler metrics on Calabi-Yau manifolds to the nonalgebraic case.
引用
收藏
页码:1167 / 1198
页数:32
相关论文
共 66 条
[1]  
[Anonymous], ARXIV11042961
[2]  
[Anonymous], ARXIV12051953
[3]  
[Anonymous], 1987, DMV SEMINAR
[4]  
[Anonymous], 2002, THESIS
[5]  
[Anonymous], ARXIV13042607
[6]  
[Anonymous], J REINE ANG IN PRESS
[7]  
[Anonymous], 1998, Math. Ann.
[8]  
[Anonymous], 2014, ADV ANAL LEGACY ELIA
[9]  
[Anonymous], 1977, Acta Math. Vietnam
[10]  
[Anonymous], ANN I FOURIER GRENOB