Weyl's theorem for operators with a growth condition and Dunford's property (C)

被引:0
作者
Jeon, IH [1 ]
机构
[1] Ewha Womans Univ, Dept Math, Seoul 120750, South Korea
关键词
Dunford's property (C); a growth condition; Weyl's theorem;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
K. Oberai showed that Weyl's theorem holds for spectral operators of finite type on Banach space. In this paper we generalize this to a class of operators with a growth condition and Dunford's property (C).
引用
收藏
页码:403 / 407
页数:5
相关论文
共 50 条
  • [31] WEYL'S THEOREM FOR ALGEBRAICALLY k-QUASICLASS A OPERATORS
    Gao, Fugen
    Fang, Xiaochun
    OPUSCULA MATHEMATICA, 2012, 32 (01) : 125 - 135
  • [32] Spectral Mapping Theorem and Weyl's Theorem for (m, n)-Paranormal Operators
    Dharmarha, Preeti
    Ram, Sonu
    FILOMAT, 2021, 35 (10) : 3293 - 3302
  • [33] Weyl spectra and Weyl's theorem
    Han, YM
    Lee, WY
    STUDIA MATHEMATICA, 2001, 148 (03) : 193 - 206
  • [34] Riesz Idempotent and Weyl’s Theorem for w-hyponormal Operators
    Young Min Han
    Jun Ik Lee
    Derming Wang
    Integral Equations and Operator Theory, 2005, 53 : 51 - 60
  • [35] Riesz idempotent and Weyl's theorem for w-hyponormal operators
    Han, YM
    Lee, JI
    Wang, DM
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2005, 53 (01) : 51 - 60
  • [36] Weyl's theorem and Putnam's inequality for class p-wA(s, t) operators
    Rashid M.H.M.
    Chō M.
    Prasad T.
    Tanahashi K.
    Uchiyama A.
    Acta Scientiarum Mathematicarum, 2018, 84 (3-4): : 573 - 589
  • [37] Weyl’s Theorem and Perturbations
    Mourad Oudghiri
    Integral Equations and Operator Theory, 2005, 53 : 535 - 545
  • [38] Perturbations and Weyl's theorem
    Duggal, B. P.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (09) : 2899 - 2905
  • [39] A note on Weyl's theorem
    Cao, XH
    Guo, MZ
    Meng, B
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (10) : 2977 - 2984
  • [40] Weyl's theorem and perturbations
    Oudghiri, M
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2005, 53 (04) : 535 - 545