Rigorous numerics for piecewise-smooth systems: A functional analytic approach based on Chebyshev series

被引:7
作者
Gameiro, Marcio [1 ]
Lessard, Jean-Philippe [2 ]
Ricaud, Yann [2 ]
机构
[1] Univ Sao Paulo, ICMC, Dept Matemat Aplicada & Estat, BR-13560970 Sao Carlos, SP, Brazil
[2] Univ Laval, Dept Math & Stat, Quebec City, PQ G1V 0A6, Canada
基金
加拿大自然科学与工程研究理事会; 巴西圣保罗研究基金会;
关键词
Rigorous numerics; Piecewise smooth systems; Periodic orbits; Contraction mapping theorem; Chebyshev series; Filippov; PARAMETERIZATION METHOD; CONNECTING ORBITS; (UN)STABLE MANIFOLDS; CHUAS CIRCUIT; PROOF;
D O I
10.1016/j.cam.2015.05.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a rigorous computational method to compute solutions of piecewise-smooth systems using a functional analytic approach based on Chebyshev series is introduced. A general theory, based on the radii polynomial approach, is proposed to compute crossing periodic orbits for continuous and discontinuous (Filippov) piecewise-smooth systems. Explicit analytic estimates to carry the computer-assisted proofs are presented. The method is applied to prove existence of crossing periodic orbits in a model nonlinear Filippov system and in the Chua's circuit system. A general formulation to compute rigorously crossing connecting orbits for piecewise-smooth systems is also introduced. (C) 2015 Published by Elsevier B.V.
引用
收藏
页码:654 / 673
页数:20
相关论文
共 24 条
[1]  
[Anonymous], 2013, APPROXIMATION THEORY
[2]   THE NUMERICAL COMPUTATION OF CONNECTING ORBITS IN DYNAMIC-SYSTEMS [J].
BEYN, WJ .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1990, 10 (03) :379-405
[3]   Global Bifurcation Diagrams of Steady States of Systems of PDEs via Rigorous Numerics: a 3-Component Reaction-Diffusion System [J].
Breden, Maxime ;
Lessard, Jean-Philippe ;
Vanicat, Matthieu .
ACTA APPLICANDAE MATHEMATICAE, 2013, 128 (01) :113-152
[4]   The parameterization method for invariant manifolds II: Regularity with respect to parameters [J].
Cabre, X ;
Fontich, E ;
De la Llave, R .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2003, 52 (02) :329-360
[5]   The parameterization method for invariant manifolds III:: Overview and applications [J].
Cabré, X ;
Fontich, E ;
de la Llave, R .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 218 (02) :444-515
[6]   The parameterization method for invariant manifolds I:: Manifolds associated to non-resonant subspaces [J].
Cabré, X ;
Fontich, E ;
De la Llave, R .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2003, 52 (02) :283-328
[7]   CANONICAL REALIZATION OF CHUA CIRCUIT FAMILY [J].
CHUA, LO ;
LIN, GN .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1990, 37 (07) :885-902
[8]   THE DOUBLE SCROLL FAMILY .1. RIGOROUS PROOF OF CHAOS [J].
CHUA, LO ;
KOMURO, M ;
MATSUMOTO, T .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1986, 33 (11) :1072-1097
[9]   Coexistence of nontrivial solutions of the one-dimensional Ginzburg-Landau equation: A computer-assisted proof [J].
Correc, Anais ;
Lessard, Jean-Philippe .
EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2015, 26 :33-60
[10]   Periodic Orbits for Planar Piecewise Smooth Systems with a Line of Discontinuity [J].
Dieci, L. ;
Elia, C. .
JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2014, 26 (04) :1049-1078