Net primary energy balance of a solar-driven photoelectrochemical water-splitting device

被引:68
作者
Zhai, Pei [1 ]
Haussener, Sophia [1 ,2 ,3 ]
Ager, Joel [2 ,4 ]
Sathre, Roger [1 ]
Walczak, Karl [2 ]
Greenblatt, Jeffery [1 ]
McKone, Thomas [1 ]
机构
[1] Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA
[2] Lawrence Berkeley Natl Lab, Joint Ctr Artificial Photosynth, Berkeley, CA USA
[3] Ecole Polytech Fed Lausanne, Inst Engn Mech, CH-1015 Lausanne, Switzerland
[4] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA USA
关键词
LIFE-CYCLE ENERGY; HYDROGEN-PRODUCTION; ELECTROCATALYSTS; CHALLENGES;
D O I
10.1039/c3ee40880a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A fundamental requirement for a renewable energy generation technology is that it should produce more energy during its lifetime than is required to manufacture it. In this study we evaluate the primary energy requirements of a prospective renewable energy technology, solar-driven photoelectrochemical (PEC) production of hydrogen from water. Using a life cycle assessment (LCA) methodology, we evaluate the primary energy requirements for upstream raw material preparation and fabrication under a range of assumptions of processes and materials. As the technology is at a very early stage of research and development, the analysis has considerable uncertainties. We consider and analyze three cases that we believe span a relevant range of primary energy requirements: 1550 MJ m(-2) (lower case), 2110 MJ m(-2) (medium case), and 3440 MJ m(-2) (higher case). We then use the medium case primary energy requirement to estimate the net primary energy balance (energy produced minus energy requirement) of the PEC device, which depends on device performance, e. g. longevity and solar-to-hydrogen (STH) efficiency. We consider STH efficiency ranging from 3% to 10% and longevity ranging from 5 to 30 years to assist in setting targets for research, development and future commercialization. For example, if STH efficiency is 3%, the longevity must be at least 8 years to yield a positive net energy. A sensitivity analysis shows that the net energy varies significantly with different assumptions of STH efficiency, longevity and thermo-efficiency of fabrication. Material choices for photoelectrodes or catalysts do not have a large influence on primary energy requirements, though less abundant materials like platinum may be unsuitable for large scale-up.
引用
收藏
页码:2380 / 2389
页数:10
相关论文
共 49 条
[1]  
Alsema E., 1998, Renewable & Sustainable Energy Reviews, V2, P387, DOI 10.1016/S1364-0321(98)00019-7
[2]   The Hydrogen Issue [J].
Armaroli, Nicola ;
Balzani, Vincenzo .
CHEMSUSCHEM, 2011, 4 (01) :21-36
[3]   Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects [J].
Bak, T ;
Nowotny, J ;
Rekas, M ;
Sorrell, CC .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2002, 27 (10) :991-1022
[4]  
Baum G. N., 2009, TECHNOECONOMIC ANAL
[5]   Comparing Photosynthetic and Photovoltaic Efficiencies and Recognizing the Potential for Improvement [J].
Blankenship, Robert E. ;
Tiede, David M. ;
Barber, James ;
Brudvig, Gary W. ;
Fleming, Graham ;
Ghirardi, Maria ;
Gunner, M. R. ;
Junge, Wolfgang ;
Kramer, David M. ;
Melis, Anastasios ;
Moore, Thomas A. ;
Moser, Christopher C. ;
Nocera, Daniel G. ;
Nozik, Arthur J. ;
Ort, Donald R. ;
Parson, William W. ;
Prince, Roger C. ;
Sayre, Richard T. .
SCIENCE, 2011, 332 (6031) :805-809
[6]   Photoelectrochemical Hydrogen Evolution Using Si Microwire Arrays [J].
Boettcher, Shannon W. ;
Warren, Emily L. ;
Putnam, Morgan C. ;
Santori, Elizabeth A. ;
Turner-Evans, Daniel ;
Kelzenberg, Michael D. ;
Walter, Michael G. ;
McKone, James R. ;
Brunschwig, Bruce S. ;
Atwater, Harry A. ;
Lewis, Nathan S. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (05) :1216-1219
[7]   Energy-Conversion Properties of Vapor-Liquid-Solid-Grown Silicon Wire-Array Photocathodes [J].
Boettcher, Shannon W. ;
Spurgeon, Joshua M. ;
Putnam, Morgan C. ;
Warren, Emily L. ;
Turner-Evans, Daniel B. ;
Kelzenberg, Michael D. ;
Maiolo, James R. ;
Atwater, Harry A. ;
Lewis, Nathan S. .
SCIENCE, 2010, 327 (5962) :185-187
[8]   LOW OVERVOLTAGE ELECTROCATALYSTS FOR HYDROGEN EVOLVING ELECTRODES [J].
BROWN, DE ;
MAHMOOD, MN ;
TURNER, AK ;
HALL, SM ;
FOGARTY, PO .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 1982, 7 (05) :405-410
[9]   Growth of monoclinic WO3 nanowire array for highly sensitive NO2 detection [J].
Cao, Baobao ;
Chen, Jiajun ;
Tang, Xiaojun ;
Zhou, Weilie .
JOURNAL OF MATERIALS CHEMISTRY, 2009, 19 (16) :2323-2327
[10]   Modelling and development of photoelectrochemical reactor for H2 production [J].
Carver, C. ;
Ulissi, Z. ;
Ong, C. K. ;
Dennison, S. ;
Kelsall, G. H. ;
Hellgardt, K. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (03) :2911-2923