ON THE NONCOMMUTATIVE GEOMETRY IN QUANTUM MECHANICS

被引:15
作者
Haouam, Ilyas [1 ]
机构
[1] Univ Freres Mentouri, Lab Phys Math & Phys Subatom LPMPS, Constantine, Algeria
来源
JOURNAL OF PHYSICAL STUDIES | 2020年 / 24卷 / 02期
关键词
noncommutative geometry; noncommutative quantum mechanics; Weyl quantization; Moyal-Weyl product; Bopp-shift transformation; Seiberg-Witten maps; Weyl-Wigner maps; uncertainty relations; SPACE-TIME; PHASE; FIELD; MODEL;
D O I
10.30970/jps.24.2002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we presented and reviewed a formalism that plays a central role in most of the investigations concerning noncommutative geometry. We presented existing methods that successfully allow us to utilize and apply the noncommutativity of phase-space in both quantum mechanics and quantum field theory. In particular, we briefly explained the Weyl quantization, the Moyal-Weyl product, the Bopp-shift transformations, and the Seiberg-Witten maps.
引用
收藏
页数:15
相关论文
共 38 条
[1]  
Arivoli S, 2016, INT J MOSQ RES, V3, P18
[2]   M theory as a matrix model: A conjecture [J].
Banks, T ;
Fischler, W ;
Shenker, SH ;
Susskind, L .
PHYSICAL REVIEW D, 1997, 55 (08) :5112-5128
[3]   Berry phase in the gravitational quantum well and the Seiberg-Witten map [J].
Bastos, C. ;
Bertolami, O. .
PHYSICS LETTERS A, 2008, 372 (34) :5556-5559
[4]   Noncommutative gravitational quantum well -: art. no. 025010 [J].
Bertolami, O ;
Rosa, JG ;
de Aragao, CML ;
Castorina, P ;
Zappalà, D .
PHYSICAL REVIEW D, 2005, 72 (02) :1-9
[5]   The standard model on non-commutative space-time [J].
Calmet, X ;
Jurco, B ;
Schupp, P ;
Wess, J ;
Wohlgenannt, M .
EUROPEAN PHYSICAL JOURNAL C, 2002, 23 (02) :363-376
[6]   Noncommutative field theory and Lorentz violation [J].
Carroll, SM ;
Harvey, JA ;
Kostelecky, VA ;
Lane, CD ;
Okamoto, T .
PHYSICAL REVIEW LETTERS, 2001, 87 (14) :141601/1-141601/4
[7]  
CONNES A, 1985, PUBL MATH-PARIS, V62, P257
[8]   Magnetic fields in noncommutative quantum mechanics [J].
Delduc, F. ;
Duret, Q. ;
Gieres, F. ;
Lefrancois, M. .
INTERNATIONAL CONFERENCE ON NONCOMMUTATIVE GEOMETRY AND PHYSICS, 2008, 103
[9]   Noncommutative quantum mechanics in a time-dependent background [J].
Dey, Sanjib ;
Fring, Andreas .
PHYSICAL REVIEW D, 2014, 90 (08)
[10]  
Fidanza S., 2003, THESIS ECOLE POLYTEC