ON THE NONCOMMUTATIVE GEOMETRY IN QUANTUM MECHANICS

被引:14
作者
Haouam, Ilyas [1 ]
机构
[1] Univ Freres Mentouri, Lab Phys Math & Phys Subatom LPMPS, Constantine, Algeria
来源
JOURNAL OF PHYSICAL STUDIES | 2020年 / 24卷 / 02期
关键词
noncommutative geometry; noncommutative quantum mechanics; Weyl quantization; Moyal-Weyl product; Bopp-shift transformation; Seiberg-Witten maps; Weyl-Wigner maps; uncertainty relations; SPACE-TIME; PHASE; FIELD; MODEL;
D O I
10.30970/jps.24.2002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we presented and reviewed a formalism that plays a central role in most of the investigations concerning noncommutative geometry. We presented existing methods that successfully allow us to utilize and apply the noncommutativity of phase-space in both quantum mechanics and quantum field theory. In particular, we briefly explained the Weyl quantization, the Moyal-Weyl product, the Bopp-shift transformations, and the Seiberg-Witten maps.
引用
收藏
页数:15
相关论文
共 38 条
  • [1] Arivoli S., 2016, INT J MOSQ RES, V3, P18
  • [2] M theory as a matrix model: A conjecture
    Banks, T
    Fischler, W
    Shenker, SH
    Susskind, L
    [J]. PHYSICAL REVIEW D, 1997, 55 (08): : 5112 - 5128
  • [3] Berry phase in the gravitational quantum well and the Seiberg-Witten map
    Bastos, C.
    Bertolami, O.
    [J]. PHYSICS LETTERS A, 2008, 372 (34) : 5556 - 5559
  • [4] Noncommutative gravitational quantum well -: art. no. 025010
    Bertolami, O
    Rosa, JG
    de Aragao, CML
    Castorina, P
    Zappalà, D
    [J]. PHYSICAL REVIEW D, 2005, 72 (02): : 1 - 9
  • [5] The standard model on non-commutative space-time
    Calmet, X
    Jurco, B
    Schupp, P
    Wess, J
    Wohlgenannt, M
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2002, 23 (02): : 363 - 376
  • [6] Noncommutative field theory and Lorentz violation
    Carroll, SM
    Harvey, JA
    Kostelecky, VA
    Lane, CD
    Okamoto, T
    [J]. PHYSICAL REVIEW LETTERS, 2001, 87 (14) : 141601/1 - 141601/4
  • [7] Connes A., 1985, Inst. Hautes Etudes Sci. Publ. Math., V62, P41
  • [8] Magnetic fields in noncommutative quantum mechanics
    Delduc, F.
    Duret, Q.
    Gieres, F.
    Lefrancois, M.
    [J]. INTERNATIONAL CONFERENCE ON NONCOMMUTATIVE GEOMETRY AND PHYSICS, 2008, 103
  • [9] Noncommutative quantum mechanics in a time-dependent background
    Dey, Sanjib
    Fring, Andreas
    [J]. PHYSICAL REVIEW D, 2014, 90 (08):
  • [10] Fidanza S., 2003, THESIS ECOLE POLYTEC