Point vortex approximation for 2D Navier-Stokes equations driven by space-time white noise

被引:5
作者
Flandoli, Franco [1 ]
Luo, Dejun [2 ,3 ]
机构
[1] Scuola Normale Super Pisa, Piazza Cavalieri 7, I-56124 Pisa, Italy
[2] Chinese Acad Sci, Acad Math & Syst Sci, RCSDS, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
Point vortices; Navier-Stokes equations; Space-time white noise; Vorticity formulation; Weak convergence; EULER EQUATIONS; CONVERGENCE; UNIQUENESS;
D O I
10.1016/j.jmaa.2020.124560
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that the system of point vortices, perturbed by a certain transport type noise, converges weakly to the vorticity form of 2D Navier-Stokes equations driven by the space-time white noise. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:21
相关论文
共 21 条
[1]   On numerical approximation of stochastic Burgers' equation [J].
Alabert, A ;
Gyöngy, I .
FROM STOCHASTIC CALCULUS TO MATHEMATICAL FINANCE: THE SHIRYAEV FESTSCHRIFT, 2006, :1-+
[2]   Uniqueness of solutions of the stochastic Navier-Stokes equation with invariant measure given by the enstrophy [J].
Albeverio, S ;
Ferrario, B .
ANNALS OF PROBABILITY, 2004, 32 (02) :1632-1649
[3]   GLOBAL FLOWS WITH INVARIANT (GIBBS) MEASURES FOR EULER AND NAVIER-STOKES 2-DIMENSIONAL FLUIDS [J].
ALBEVERIO, S ;
CRUZEIRO, AB .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 129 (03) :431-444
[4]  
Albeverio S., 2008, CIME LECT
[5]   Strong L2 convergence of time numerical schemes for the stochastic two-dimensional Navier-Stokes equations [J].
Bessaih, Hakima ;
Millet, Annie .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2019, 39 (04) :2135-2167
[6]  
BILLINGSLEY P., 1999, A Wiley-Interscience Publication, Vsecond
[7]   Two-dimensional Navier-Stokes equations driven by a space-time white noise [J].
Da Prato, G ;
Debussche, A .
JOURNAL OF FUNCTIONAL ANALYSIS, 2002, 196 (01) :180-210
[8]   The 2D-Navier-Stokes equations perturbed by a delta correlated noise [J].
Debussche, A .
PROBABILISTIC METHODS IN FLUIDS, PROCEEDINGS, 2003, :115-129
[9]   SEMIGROUP SPLITTING AND CUBATURE APPROXIMATIONS FOR THE STOCHASTIC NAVIER-STOKES EQUATIONS [J].
Doersek, Philipp .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2012, 50 (02) :729-746
[10]   CONVERGENCE OF TRANSPORT NOISE TO ORNSTEIN-UHLENBECK FOR 2D EULER EQUATIONS UNDER THE ENSTROPHY MEASURE [J].
Flandoli, Franco ;
Luo, Dejun .
ANNALS OF PROBABILITY, 2020, 48 (01) :264-295