Selective electrocatalysts toward a prototype of the membraneless direct methanol fuel cell

被引:19
作者
Feng, Yan [1 ,2 ]
Yang, Jinhua [3 ]
Liu, Hui [1 ,2 ]
Ye, Feng [1 ]
Yang, Jun [1 ,3 ]
机构
[1] Chinese Acad Sci, Inst Proc Engn, State Key Lab Multiphase Complex Syst, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Inst Bioengn & Nanotechnol, Singapore 138669, Singapore
基金
中国国家自然科学基金;
关键词
OXYGEN REDUCTION; COMPOSITE MEMBRANES; NAFION MEMBRANE; CROSSOVER; PLATINUM; NANOCRYSTALS; ALLOYS; POWER; AG2S; RU;
D O I
10.1038/srep03813
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Mastery over the structure of nanomaterials enables control of their properties to enhance their performance for a given application. Herein we demonstrate the design and fabrication of Pt-based nanomaterials with enhanced catalytic activity and superior selectivity toward the reactions in direct methanol fuel cells (DMFCs) upon the deep understanding of the mechanisms of these electrochemical reactions. In particular, the ternary Au@Ag2S-Pt nanocomposites display superior methanol oxidation reaction (MOR) selectivity due to the electronic coupling effect among different domains of the nanocomposites, while the cage-bell structured Pt-Ru nanoparticles exhibit excellent methanol tolerance for oxygen reduction reaction (ORR) at the cathode because of the differential diffusion of methanol and oxygen in the porous Ru shell of the cage-bell nanoparticles. The good catalytic selectivity of these Pt-based nanomaterials via structural construction enables a DMFCto be built without a proton exchange membrane between the fuel electrode and the oxygen electrode.
引用
收藏
页数:7
相关论文
共 37 条
[1]   An overview of platinum-based catalysts as methanol-resistant oxygen reduction materials for direct methanol fuel cells [J].
Antolini, E. ;
Lopes, T. ;
Gonzalez, E. R. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2008, 461 (1-2) :253-262
[2]   Formation of carbon-supported PtM alloys for low temperature fuel cells: a review [J].
Antolini, E .
MATERIALS CHEMISTRY AND PHYSICS, 2003, 78 (03) :563-573
[3]   Nafion®-sepiolite composite membranes for improved proton exchange membrane fuel cell performance [J].
Beauger, Christian ;
Laine, Guillaume ;
Burr, Alain ;
Taguet, Aurelie ;
Otazaghine, Belkacem ;
Rigacci, Arnaud .
JOURNAL OF MEMBRANE SCIENCE, 2013, 430 :167-179
[4]  
Cameron D.S., 1987, Platinum Metals Review, V31, P173
[5]   Shape-controlled synthesis of platinum nanocrystals for catalytic and electrocatalytic applications [J].
Chen, Jingyi ;
Lim, Byungkwon ;
Lee, Eric P. ;
Xia, Younan .
NANO TODAY, 2009, 4 (01) :81-95
[6]   Effect of methanol crossover on the cathode behavior of a DMFC: A half-cell investigation [J].
Du, C. Y. ;
Zhao, T. S. ;
Yang, W. W. .
ELECTROCHIMICA ACTA, 2007, 52 (16) :5266-5271
[7]   Pd-Ti and Pd-Co-Au electrocatalysts as a replacement for platinum for oxygen reduction in proton exchange membrane fuel cells [J].
Fernández, JL ;
Raghuveer, V ;
Manthiram, A ;
Bard, AJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (38) :13100-13101
[8]   Membraneless vanadium redox fuel cell using laminar flow [J].
Ferrigno, R ;
Stroock, AD ;
Clark, TD ;
Mayer, M ;
Whitesides, GM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2002, 124 (44) :12930-12931
[9]   Methanol crossover in direct methanol fuel cells: a link between power and energy density [J].
Gurau, B ;
Smotkin, ES .
JOURNAL OF POWER SOURCES, 2002, 112 (02) :339-352
[10]   Air-breathing laminar flow-based direct methanol fuel cell with alkaline electrolyte [J].
Jayashree, RS ;
Egas, D ;
Spendelow, JS ;
Natarajan, D ;
Markoski, LJ ;
Kenis, PJA .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2006, 9 (05) :A252-A256