Quantum entanglement on boundaries

被引:17
作者
Fursaev, D. V. [1 ,2 ]
机构
[1] Dubna Int Univ, Dubna 141980, Moscow Region, Russia
[2] Joint Inst Nucl Res, Bogoliubov Lab Theoret Phys, Dubna, Russia
关键词
Anomalies in Field and String Theories; Statistical Methods; Renormalization Group; HEAT-KERNEL-EXPANSION; C-THEOREM; ENTROPY;
D O I
10.1007/JHEP07(2013)119
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Quantum entanglement in 3 spatial dimensions is studied in systems with physical boundaries when an entangling surface intersects the boundary. We show that there are universal logarithmic boundary terms in the entanglement Renyi entropy and derive them for different conformal field theories and geometrical configurations. The paper covers such topics as spectral geometry on manifolds with conical singularities crossing the boundaries, the dependence of the entanglement entropy on mutual position of the boundary and the entangling surface, effects of acceleration and rotation of the boundary, relations of coefficients in the trace anomaly to coefficients in the boundary logarithmic terms in the entropy. The computations are done for scalar, spinor and gauge fields.
引用
收藏
页数:25
相关论文
共 28 条
[1]   UNIVERSAL NONINTEGER GROUND-STATE DEGENERACY IN CRITICAL QUANTUM-SYSTEMS [J].
AFFLECK, I ;
LUDWIG, AWW .
PHYSICAL REVIEW LETTERS, 1991, 67 (02) :161-164
[2]  
BUCHBINDER IL, 1984, THEOR MATH PHYS, V61, P393
[3]  
Calabrese P., 2009, J PHYS A, V42
[4]  
Cardy J.L., hep-th/0411189
[5]   IS THERE A C-THEOREM IN 4 DIMENSIONS [J].
CARDY, JL .
PHYSICS LETTERS B, 1988, 215 (04) :749-752
[6]   A c-theorem for entanglement entropy [J].
Casini, H. ;
Huerta, M. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (25) :7031-7036
[7]   Renormalization group running of the entanglement entropy of a circle [J].
Casini, H. ;
Huerta, M. .
PHYSICAL REVIEW D, 2012, 85 (12)
[8]   Holographic entanglement entropy in Lovelock gravities [J].
de Boer, Jan ;
Kulaxizi, Manuela ;
Parnachev, Andrei .
JOURNAL OF HIGH ENERGY PHYSICS, 2011, (07)
[9]   CONFORMAL PROPERTIES OF THE HEAT-KERNEL EXPANSION - APPLICATION TO THE EFFECTIVE LAGRANGIAN [J].
DOWKER, JS .
PHYSICAL REVIEW D, 1989, 39 (04) :1235-1238
[10]   CONFORMAL TRANSFORMATIONS AND THE EFFECTIVE ACTION IN THE PRESENCE OF BOUNDARIES [J].
DOWKER, JS ;
SCHOFIELD, JP .
JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (04) :808-818