A residual-based a posteriori error estimator for the plane linear elasticity problem with pure traction boundary conditions

被引:4
作者
Dominguez, Carolina [1 ]
Gatica, Gabriel N. [2 ,3 ]
Marquez, Antonio [4 ]
机构
[1] Univ Austral Chile, Ctr Docencia Super Ciencias Basicas, Puerto Montt, Chile
[2] Univ Concepcion, CI2MA, Concepcion, Chile
[3] Univ Concepcion, Dept Ingn Matemat, Concepcion, Chile
[4] Univ Oviedo, Dept Construcc & Ingn Fabricac, Oviedo, Spain
关键词
Elasticity equation; Pure Neumann conditions; Mixed finite element method; A posteriori error estimator; PEERS; FINITE-ELEMENT-METHOD;
D O I
10.1016/j.cam.2015.07.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we consider the two-dimensional linear elasticity problem with pure non-homogeneous Neumann boundary conditions, and derive a reliable and efficient residual-based a posteriori error estimator for the corresponding stress-displacement-rotation dual-mixed variational formulation. The proof of reliability makes use of a suitable auxiliary problem, the continuous inf-sup conditions satisfied by the bilinear forms involved, and the local approximation properties of the Clement and Raviart-Thomas interpolation operators. In turn, inverse and discrete trace inequalities, and the localization technique based on triangle-bubble and edge-bubble functions, are the main tools yielding the efficiency of the estimator. Several numerical results confirming the properties of the estimator and illustrating the performance of the associated adaptive algorithm are also reported. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:486 / 504
页数:19
相关论文
共 43 条
[1]  
Agmon S., 1965, Lectures on Elliptic Boundary Value Problems. Van Nostrand Mathematical Studies
[2]   Error estimators for a mixed method [J].
Alonso, A .
NUMERISCHE MATHEMATIK, 1996, 74 (04) :385-395
[3]  
Arnold D. N., 1984, JAPAN J APPL MATH, V1, P347
[4]   Mixed finite elements for elasticity [J].
Arnold, DN ;
Winther, R .
NUMERISCHE MATHEMATIK, 2002, 92 (03) :401-419
[5]   AN INTERIOR PENALTY FINITE-ELEMENT METHOD WITH DISCONTINUOUS ELEMENTS [J].
ARNOLD, DN .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1982, 19 (04) :742-760
[6]   A FAMILY OF HIGHER-ORDER MIXED FINITE-ELEMENT METHODS FOR PLANE ELASTICITY [J].
ARNOLD, DN ;
DOUGLAS, J ;
GUPTA, CP .
NUMERISCHE MATHEMATIK, 1984, 45 (01) :1-22
[7]   Mixed finite element methods for linear elasticity with weakly imposed symmetry [J].
Arnold, Douglas N. ;
Falk, Richard S. ;
Winther, Ragnar .
MATHEMATICS OF COMPUTATION, 2007, 76 (260) :1699-1723
[8]  
Arnold DN, 2006, ACT NUMERIC, V15, P1, DOI 10.1017/S0962492906210018
[9]   FINITE-ELEMENT METHOD WITH LAGRANGIAN MULTIPLIERS [J].
BABUSKA, I .
NUMERISCHE MATHEMATIK, 1973, 20 (03) :179-192
[10]   On the mixed finite element method with Lagrange multipliers [J].
Babuska, I ;
Gatica, GN .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2003, 19 (02) :192-210