Qualitative properties of positive solutions of semilinear elliptic equations in symmetric domains via the maximum principle
被引:92
作者:
Damascelli, L
论文数: 0引用数: 0
h-index: 0
机构:Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
Damascelli, L
Grossi, M
论文数: 0引用数: 0
h-index: 0
机构:Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
Grossi, M
Pacella, F
论文数: 0引用数: 0
h-index: 0
机构:Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
Pacella, F
机构:
[1] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
[2] Univ Rome La Sapienza, Dipartimento Matemat, I-00133 Rome, Italy
来源:
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE
|
1999年
/
16卷
/
05期
关键词:
D O I:
10.1016/S0294-1449(99)80030-4
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
In this paper we study the positive solutions of the equation -Delta u + lambda u = f(u) in a bounded symmetric domain Omega in R-N, with the boundary condition u = 0 on partial derivative Omega. Using the maximum principle we prove the symmetry of the solutions v of the linearized problem. From this we deduce several properties of v and u; in particular we show that if N = 2 there cannot exist two solutions which have the same maximum if f is also convex and that there exists only one solution if f(u) = u(p) and lambda = 0. In the final section we consider the problem -Delta u = u(P) + mu u(q) in Omega with u = 0 on partial derivative Omega, and show that if 1 < p < N=2/N-2,q is an element of]0,1[ there are exactly two positive solutions for mu, sufficiently small and some particular domain Omega. (C) Elsevier, Paris.
引用
收藏
页码:631 / 652
页数:22
相关论文
共 20 条
[1]
ADIMURTHI, 1994, ARCH RATIONAL MECH A, V126, P219
[2]
Adimurthy, 1997, DIFFER INTEGRAL EQU, V10, P1157