Multi-bump solutions to a nonlinear Schrodinger equation with steep magnetic wells

被引:2
作者
Shirai, Shin-ichi [1 ]
机构
[1] Osaka Inst Technol, Dept Math, Asahi Ku, Osaka 5358585, Japan
关键词
POSITIVE SOLUTIONS; ELECTROMAGNETIC-FIELDS; ELLIPTIC PROBLEMS; CRITICAL GROWTH; R-N; MULTIPLICITY; EXISTENCE; ENERGY; R(N);
D O I
10.1063/1.4930247
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show the existence of multi-bump solutions to a magnetic nonlinear Schrodinger equation with subcritical superlinear nonlinearity, -(del-i lambda A)(2)u = f (|u|(2)) u on R-N under some assumptions. Moreover, we show that the solutions are localized near every prescribed connected component of the interior of the zero set of the magnetic field B = dA as lambda ->infinity. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:19
相关论文
共 24 条
[1]   Multiplicity of positive solutions for a class of problems with exponential critical growth in R2 [J].
Alves, Claudianor O. ;
Souto, Marco A. S. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 244 (06) :1502-1520
[2]  
Alves CO, 2009, TOPOL METHOD NONL AN, V34, P231
[3]   MULTIPLICITY OF POSITIVE SOLUTIONS FOR A CLASS OF PROBLEMS WITH CRITICAL GROWTH IN RN [J].
Alves, Claudianor O. ;
de Morais Filho, Daniel C. ;
Souto, Marco A. S. .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2009, 52 :1-21
[4]  
[Anonymous], 2010, FUNCTIONAL ANAL
[5]   Nonlinear Schrodinger equations with steep potential well [J].
Bartsch, T ;
Pankov, A ;
Wang, ZQ .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2001, 3 (04) :549-569
[6]   Multiple positive solutions for a nonlinear Schrodinger equation [J].
Bartsch, T ;
Wang, ZQ .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2000, 51 (03) :366-384
[7]   EXISTENCE AND MULTIPLICITY RESULTS FOR SOME SUPERLINEAR ELLIPTIC PROBLEMS ON R(N) [J].
BARTSCH, T ;
WANG, ZQ .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1995, 20 (9-10) :1725-1741
[8]   MULTIBUMP SOLUTIONS OF NONLINEAR SCHRODINGER EQUATIONS WITH STEEP POTENTIAL WELL AND INDEFINITE POTENTIAL [J].
Bartsch, Thomas ;
Tang, Zhongwei .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2013, 33 (01) :7-26
[9]  
Cycon H.L., 1987, TEXTS MONOGRAPHS PHY
[10]   Multiplicity of positive solutions of a nonlinear Schrodinger equation [J].
Ding, YH ;
Tanaka, K .
MANUSCRIPTA MATHEMATICA, 2003, 112 (01) :109-135