Conditions for the Absence of Blowing Up Solutions to Fractional Differential Equations

被引:7
作者
de Carvalho-Neto, Paulo M. [1 ]
Fehlberg Junior, Renato [2 ]
机构
[1] Univ Fed Santa Catarina, Dept Matemat, Florianopolis, SC, Brazil
[2] Univ Fed Espirito Santo, Dept Matemat, Vitoria, ES, Brazil
关键词
Caputo derivative; Fractional differential equations; Blow up solutions; CAUCHY-PROBLEMS;
D O I
10.1007/s10440-017-0130-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
When addressing ordinary differential equations in infinite dimensional Banach spaces, an interesting question that arises concerns the existence (or non existence) of blowing up solutions in finite time. In this manuscript we discuss this question for the fractional differential equation proving that when is locally Lipschitz in the second variable, uniformly with respect to the first variable, however does not maps bounded sets into bounded sets, we can construct a maximal local solution that does not "blow up" in finite time.
引用
收藏
页码:15 / 29
页数:15
相关论文
共 19 条
[1]  
[Anonymous], 2006, THEORY APPL FRACTION
[2]  
[Anonymous], 1950, Acta Sci. Math. (Szeged)
[3]  
Carvalho-Neto P. M., 2013, THESIS
[4]  
de Andrade B, 2015, TOPOL METHOD NONL AN, V45, P439
[5]   Mild solutions to the time fractional Navier-Stokes equations in RN [J].
de Carvalho-Neto, Paulo Mendes ;
Planas, Gabriela .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (07) :2948-2980
[6]  
Deimling K., 1977, Ordinary Differential Equations in Banach Spaces
[7]  
Deimling K., 1992, MULTIVALUED DIFFEREN, V1
[8]  
Dunford N., 1958, Linear Operators
[9]   COUNTEREXAMPLE TO APPROXIMATION PROBLEM IN BANACH SPACES [J].
ENFLO, P .
ACTA MATHEMATICA, 1973, 130 (3-4) :309-317
[10]  
Komornik V., 2003, ACTA SCI MATH SZEGED, V69, P651