A New Nonsymmetric Discontinuous Galerkin Method for Time Dependent Convection Diffusion Equations

被引:16
作者
Yan, Jue [1 ]
机构
[1] Iowa State Univ, Dept Math, Ames, IA 50011 USA
基金
美国国家科学基金会;
关键词
Discontinuous Galerkin method; Convection diffusion equation; Stability; Convergence; FINITE-ELEMENT-METHOD; SHOCK-CAPTURING SCHEMES; EFFICIENT IMPLEMENTATION; ELLIPTIC PROBLEMS;
D O I
10.1007/s10915-012-9637-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a discontinuous Galerkin finite element method for convection diffusion equations that involves a new methodology handling the diffusion term. Test function derivative numerical flux term is introduced in the scheme formulation to balance the solution derivative numerical flux term. The scheme has a nonsymmetric structure. For general nonlinear diffusion equations, nonlinear stability of the numerical solution is obtained. Optimal kth order error estimate under energy norm is proved for linear diffusion problems with piecewise P (k) polynomial approximations. Numerical examples under one-dimensional and two-dimensional settings are carried out. Optimal (k+1)th order of accuracy with P (k) polynomial approximations is obtained on uniform and nonuniform meshes. Compared to the Baumann-Oden method and the NIPG method, the optimal convergence is recovered for even order P (k) polynomial approximations.
引用
收藏
页码:663 / 683
页数:21
相关论文
共 27 条
[1]  
[Anonymous], 2002, MATH THEORY FINITE E, DOI DOI 10.1007/978-1-4757-3658-8
[2]   Unified analysis of discontinuous Galerkin methods for elliptic problems [J].
Arnold, DN ;
Brezzi, F ;
Cockburn, B ;
Marini, LD .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 39 (05) :1749-1779
[3]   AN INTERIOR PENALTY FINITE-ELEMENT METHOD WITH DISCONTINUOUS ELEMENTS [J].
ARNOLD, DN .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1982, 19 (04) :742-760
[4]  
BAKER GA, 1977, MATH COMPUT, V31, P45, DOI 10.1090/S0025-5718-1977-0431742-5
[5]   A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations [J].
Bassi, F ;
Rebay, S .
JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 131 (02) :267-279
[6]   A discontinuous hp finite element method for convection-diffusion problems [J].
Baumann, CE ;
Oden, JT .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1999, 175 (3-4) :311-341
[7]  
Brenner SC, 2008, ELECTRON T NUMER ANA, V30, P107
[8]  
Carey G., 1995, Numer. Methods Partial, V11, P175, DOI [10.1002/num.1690110206, DOI 10.1002/NUM.1690110206]
[9]  
Cheng Y, 2008, MATH COMPUT, V77, P699, DOI 10.1090/S0025-5718-07-02045-5
[10]   The local discontinuous Galerkin method for time-dependent convection-diffusion systems [J].
Cockburn, B ;
Shu, CW .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (06) :2440-2463